Skip to main content
Log in

Thermal Conductivity of 1,2-Ethanediol and 1,2-Propanediol Binary Aqueous Solutions at Temperature from 253 K to 373 K

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

1,2-Ethanediol, 1,2-propanediol and their aqueous solutions are widely used as heat transfer fluids. Their thermal conductivity is a vital physical property, yet there are only few reports in literature. In this paper, thermal conductivity of binary aqueous solutions of the two glycols was measured using the transient hot wire method at temperature from 253.15 K to 373.15 K at atmospheric pressure. Measurement was made for six compositions over the entire concentration range from 0 mol to 1 mol fraction of glycol, namely, 0.0 mol, 0.2 mol, 0.4 mol, 0.6 mol, 0.8 mol, and 1.0 mol fraction of glycol. The uncertainties of temperature and concentration measurement were estimated to be 0.01 K and 0.1 %, respectively. The combined expanded uncertainty of thermal conductivity with a level of confidence of 0.95 (k = 2) was 2 %. The second-order Scheffé polynomial was used to correlate the temperature and composition dependence of the experimental thermal conductivity, which was found to be in good agreement with the experiment data from the present work and other reports.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S. Rebsdat, D. Mayer, Ullmann’s Encyclopedia of Industrial Chemistry (WWiley, Hoboken, 2000). https://doi.org/10.1002/14356007.a10_101

    Book  Google Scholar 

  2. C.J. Sullivan, Ullmann’s Encyclopedia of Industrial Chemistry (Wiley, Hoboken, 2000). https://doi.org/10.1002/14356007.a22_163.pub2

    Book  Google Scholar 

  3. ASHRAE, Physical properties of secondary coolants (brines), in ASHRAE HandbookFundamentals (ASHRAE, Atlanta, 2005), pp. 31.1–31.13

  4. F.N. Shamsetdinov, Z.I. Zaripov, I.M. Abdulagatov, M.L. Huber, F.M. Gumerov, F.R. Gabitov, A.F. Kazakov, Int. J. Refrig 36, 1347–1368 (2013)

    Article  Google Scholar 

  5. M.S. Najjar, K.J. Bell, R.N. Maddox, Heat Transf. Eng. 2, 27–39 (1981)

    Article  ADS  Google Scholar 

  6. D. Bohne, S. Fischer, E. Obermeier, Ber. Bunsenges. Phys. Chem. 88, 739–742 (1984)

    Article  Google Scholar 

  7. K. Kroenlein, V. Diky, C.D. Muzny, R.D. Chirico, J.W. Magee, M. Frenkel, ThermoLit: NIST Literature Report Builder for Thermalchemical Properties Measurements (US Secretary of Commerce, 2016) http://trc.nist.gov/thermolit/main/home.html#home. Accessed 06 November 2017

  8. O. Bates, G. Hazzard, Ind. Eng. Chem. 37, 193–195 (1945)

    Article  Google Scholar 

  9. L. Riedel, Chem. Ing. Tech. 23, 465–469 (1951)

    Article  Google Scholar 

  10. Y.L. Rastorguev, Y.A. Ganiev, Russ. J. Phys. Chem. 40, 869–871 (1966)

    Google Scholar 

  11. Y.L. Rastorguev, Y.A. Ganiev, Zh. Fiz. Khim. 41, 1352 (1967)

    Google Scholar 

  12. W.N. Vanderkooi, D.L. Hildenbrand, D.R. Stull, J. Chem. Eng. Data 12, 377–379 (1967)

    Article  Google Scholar 

  13. Y.A. Ganiev, Y.L. Rastorguev, Russ. J. Phys. Chem. 42, 68–71 (1968)

    Google Scholar 

  14. I.U. Usmanov, A.S. Salikhov, Russ. J. Phys. Chem. 51, 1488–1489 (1977)

    Google Scholar 

  15. I.S. Bogacheva, K.B. Zemdikhanov, G.K. Mukhamedzyanov, A.K. Sadykov, A.G. Usmanov, Russ. J. Phys. Chem. 54, 838–839 (1980)

    Google Scholar 

  16. A. Grigrev, Thermal Conductivity: Water and Water-Organic Systems, Sov. Un. Gov. Bur. of Stand., Grozny Oil Inst., Inf. Ser. (1985)

  17. M.J. Assael, E. Charitidou, S. Avgoustiniatos, W.A. Wakeham, Int. J. Thermophys. 10, 1127–1140 (1989)

    Article  ADS  Google Scholar 

  18. T. Sun, A.S. Teja, J. Chem. Eng. Data 48, 198–202 (2003)

    Article  Google Scholar 

  19. T. Sun, A.S. Teja, J. Chem. Eng. Data 49, 1311–1317 (2004)

    Article  Google Scholar 

  20. X. Li, J. Wu, Q. Dang, J. Chem. Eng. Data 55, 1241–1246 (2010)

    Article  Google Scholar 

  21. G. Labudová, V. Vozárová, J. Therm. Anal. Calorim. 67, 257–265 (2002)

    Article  Google Scholar 

  22. X. Jin, Experimental Research of Heat Conductiv-ity for Liquids Based on Transient Hot-Wire Method (Xi’an Jiaotong Unvieristy, 2004) [unpublished Master’s thesis]

  23. W.W. Focke, Int. J. Thermophys. 29, 1342–1360 (2008)

    Article  ADS  Google Scholar 

  24. Y.A. Ganiev, Zh. Fiz. Khim. 43, 239–240 (1969)

    Google Scholar 

  25. Y.L. Rastorguev, M.A. Gazdiev, Inzh. Fiz. Zh. 17, 72–79 (1969)

    Google Scholar 

  26. R. DiGuilio, A.S. Teja, J. Chem. Eng. Data 35, 117 (1990)

    Article  Google Scholar 

  27. M.J. Pastoriza-Gallego, L. Lugo, D. Cabaleiro, J.L. Legido, M.M. Piñeiro, J. Chem. Thermodyn. 73, 23–30 (2014)

    Article  Google Scholar 

  28. G.M. Mallan, M.S. Michaelian, F.J. Lockhart, J. Chem. Eng. Data 17, 412 (1972)

    Article  Google Scholar 

  29. J.C. Zhou, Y.Y. Che, K.J. Wu, J. Shen, C.H. He, J. Chem. Eng. Data 58, 663–670 (2013)

    Article  Google Scholar 

  30. M.L. Huber, R.A. Perkins, D.G. Friend, J.V. Sengers, M.J. Assael, I.N. Metaxa, K. Miyagawa, R. Hellmann, E. Vogel, J. Phys. Chem. Ref. Data 41, (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, C., Zhang, K. Thermal Conductivity of 1,2-Ethanediol and 1,2-Propanediol Binary Aqueous Solutions at Temperature from 253 K to 373 K. Int J Thermophys 42, 81 (2021). https://doi.org/10.1007/s10765-021-02837-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-021-02837-6

Keywords

Navigation