Skip to main content

Advertisement

Log in

Phase Diagrams for Ternary Mixtures of Methane, Propane, and Octane for the Low Concentration of Octane

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Precision data of the accurate calorimetric measurements of phase equilibria for ternary mixtures of methane, propane, and octane especially for the low concentration of octane have been presented. Based on the experimental data of heat capacity, internal energy, pressure, and temperature derivative of pressure at constant volume, the phase diagrams have been plotted in the range 140–350 K and 0.1–24 MPa. Phase transitions are localized by the finite discontinuities in temperature derivatives of the thermodynamic potentials. Our investigations show that hydrocarbon mixtures for the low concentration of octane split into two phases, the macrophase enriched by methane and propane and the octane-rich microphase. Besides, octane provokes a split of the liquid part of the macrophase into two liquid phases, the octane-rich phase and the octane-lean phase. To prove that all phases are equilibrium phases a cooling mode of measurements is used. At the cooling mode of measurements the same phase transitions as at the heating mode occur. These phase transitions correspond to the formation of the octane-rich microphase and the macrophase enriched by methane and propane. Besides, at the cooling mode of measurements a split of the liquid part of the macrophase into two liquid phases takes place.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. The word “bifurcation” means to divide or fork into two branches.

  2. The word “isomorphism” derives from the Greek iso, meaning "equal," and morphosis, meaning "to form" or "to shape."

Abbreviations

P :

Pressure [MPa]

T :

Temperature [K]

U :

Internal energy [J]

Ω/V = -P :

Density of grand potential [MPa]

C V = (δU/δT) V :

Heat capacity at constant volume [kJ·kg1·K1]

(δP/δT) V :

Temperature derivative of pressure at constant volume (the thermal pressure coefficient) [MPa·K1]

(δP/δT) σ :

Temperature derivative of pressure along the equilibrium (saturation) curve [MPa·K1]

X :

Concentration [mole fraction]

M :

Mass [kg]

ρ :

Density [kg·m3]

V:

Vapor phase

L:

Methane-propane liquid phase

L1 :

Octane-lean liquid phase

L2 :

Octane-rich liquid phase

S:

Microphase

UCEP:

Upper critical end point

LCST:

Lower critical solution point

BP:

Bifurcation point

CPbinary :

Critical point of a binary mixture

CP*binary :

Critical point of a binary mixture in the presence of an octane-rich microphase

References

  1. V.M. Buleiko, D.V. Buleiko, Int. J. Thermophys. 41, 27 (2020). https://doi.org/10.1007/s10765-020-2602-5

    Article  ADS  Google Scholar 

  2. V.M. Buleiko, B.A. Grigoriev, V.S. Muzykina, News Gas Sci. 1, 116 (2019). ((in Russian))

    Google Scholar 

  3. P.H. van Konynenburg, R.L. Scott, Philos. Trans. 298A, 445 (1980)

    ADS  Google Scholar 

  4. E.A. Guggenheim, Mixtures. The Theory of the Equilibrium Properties of Some Simple Classes of Mixtures, Solutions and Alloys (Oxford University Press, Amen Hous, London, 1952).

    Google Scholar 

  5. J.S. Rowlinson, F.L. Swinton, Liquids and Liquid Mixtures (Butterworth & Co (Publishers) Ltd, London, 1982).

    Google Scholar 

  6. A.J. Davenport, J.S. Rowlinson, Trans. Faraday Soc. 59, 78 (1963)

    Article  Google Scholar 

  7. J.P. Kohn, Y.J. Kim, Y.C. Pan, J. Chem. Eng. Data 33, 278 (1966)

    Google Scholar 

  8. A.B. Rodrigues, J.P. Kohn, J. Chem, Eng. Data 12, 191 (1967)

    Article  Google Scholar 

  9. J.R. Wagner, D.S. McCaffrey, J.P. Kohn, J. Chem. Eng. Data 13, 22 (1968)

    Article  Google Scholar 

  10. K.S. Pedersen, A. Fredenslund, P. Thomassen, Properties of Oils and Gases. Contributions in Petroleum Geology and Engineering (Gulf Publishing Company, Houston, 1989).

    Google Scholar 

  11. V.M. Buleiko, B.A. Grigoriev, V.A. Istomin, Vestnik Kazan Technol. Univ. 17, 101 (2014). ((in Russian))

    Google Scholar 

  12. P.I. Freeman, J.S. Rowlinson, Pure Appl. Chem. (1961). https://doi.org/10.1351/pac196102010329

    Article  Google Scholar 

  13. J.D. Hottovy, J.P. Kohn, K.D. Luks, J. Chem. Eng. Data 26, 135–137 (1981)

    Article  Google Scholar 

  14. J.D. Hottovy, J.P. Kohn, K.D. Luks, J. Chem. Eng. Data 27, 298–302 (1982)

    Article  Google Scholar 

  15. B. Lagourette, J.L. Daridon, J.F. Gaubert, H. Saint-Guirons, J. Chem. Thermodyn. 27, 259–266 (1995)

    Article  Google Scholar 

  16. Z.M. Ramazanova, Izv. Vyssh. Uchebn. Zaved. Neft Gaz 7, 77–81 (1964)

    Google Scholar 

  17. V.M. Buleiko, B.A. Grigoriev, V.A. Istomin, Fluid Phase Equilib. 441, 64 (2017)

    Article  Google Scholar 

  18. V.M. Buleiko, B.A. Grigoriev, J. Mendoza, Fluid Phase Equilib. 462, 14 (2018)

    Article  Google Scholar 

  19. V.M. Buleiko, Laws governing the phase transformations of hydrocarbon mixtures in the oil and gas reservoirs of the developed deposits (based on the experimental data), Thesis of the scientific degree of Doctor of Technical Science. (Russian Academy of Science, 2007), (in Russian).

  20. D. Frenkel, J. Phys.: Condens. Matter 6, 71 (1994)

    ADS  Google Scholar 

  21. I. Iosilevskiy, Non-Ideality and Phase Transitions in Coulomb Systems, Lambert (Academic Publishing, Berlin, 2011).

    Google Scholar 

  22. V. Gryaznov, I. Iosilevskiy, J. Phys. A: Math. Theor. 42, 214007 (2009)

    Article  ADS  Google Scholar 

  23. I. Iosilevskiy, J. Phys. Conf. Ser. 653, 012077 (2015)

    Article  Google Scholar 

  24. M. Hempel, O. Heinimann, A. Yudin, I. Iosilevskiy, M. Liebendoerfer, F.-K. Thielemann, Phys. Rev. D 94, 103001 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgement

This work was supported by the Russian Foundation for Fundamental Research under Grant No. 19-08-00202.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Buleiko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buleiko, V.M., Buleiko, D.V. Phase Diagrams for Ternary Mixtures of Methane, Propane, and Octane for the Low Concentration of Octane. Int J Thermophys 42, 85 (2021). https://doi.org/10.1007/s10765-021-02835-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-021-02835-8

Keywords

Navigation