Skip to main content
Log in

Experimental Measurements of Thermal Conductivity for Non-Newtonian Polymeric Fluids Using a Concentric Cylindrical Cell Under Static Conditions

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

In the current article, the experimental measurement of thermal conductivities for non-Newtonian polymeric fluids has been performed over a wide range of polymer concentrations. Measurements of the thermal conductivity for three Newtonian fluids and three different groups of non-Newtonian polymeric aqueous fluids (twenty-four polymeric solutions) under static conditions are conducted using the cell of concentric cylinders with the annular gap of 0.4 mm. Various polymer concentrations ranged from 100 ppm to 5000 ppm by weight are implemented in the experiments with temperature changed from 20 °C to 50 °C. Accordingly, the impact of relevant non-Newtonian fluid parameters, such as polymer concentrations, polymer types and molecular weights as well as the kind of solvents on the thermal conductivity of non-Newtonian fluids were systematically tested. The experimental results of thermal conductivity for the Newtonian fluids (distilled water, 50 % methanol-50 % water and 50 % glycerin-50 % water) are in a reasonable agreement with the previously published data with the differences always being less than 4.5 %. Moreover, thermal conductivities of non-Newtonian polymeric solutions are approximately the same values of Newtonian fluids with the corresponding temperatures under rest condition and any fluctuation in the measured data is within the permissible error uncertainty. Although, the addition of polymeric particles has the ability to turn the state of the fluid from Newtonian to non-Newtonian, there is no noteworthy influence on the thermal conductivity of these non-Newtonian fluids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. R.P. Chhabra, J.F. Richardson, Non-Newtonian Flow and Applied Rheology: Engineering Applications (Butterworth-Heinemann, Stoneham, 2011)

    Google Scholar 

  2. R.B. Bird, R.C. Armstrong, O. Hassager, Dynamics of Polymeric Liquids, 2nd edn. (John Wiley and Sons Inc., New York, 1987)

    Google Scholar 

  3. P.W. Bridgman, The thermal conductivity of liquids under pressure. Proc. Am. Acad. Arts Sci. 59, 141–169 (1923)

    Article  Google Scholar 

  4. J.F.D. Smith, Thermal conductivity of liquids. Ind. Eng. Chem. 22, 1246–1251 (1930)

    Article  Google Scholar 

  5. S.R. Woolf, W.L. Sibbit, Thermal conductivity of liquids. Ind. Eng. Chem. 46, 1947–1952 (1954)

    Article  Google Scholar 

  6. R.G. Vines, Measurement of the thermal conductivities of gases at high temperatures. Trans. ASME J. Heat Transfer 76, 48–52 (1960)

    Article  Google Scholar 

  7. O.K. Bates, Binary mixtures of water and glycerol-thermal conductivity of liquids. Ind. Eng. Chem. 28, 494–498 (1936)

    Article  Google Scholar 

  8. O.K. Bates, G. Hazzard, G. Palmer, Thermal conductivity of liquids binary mixtures of water-methyl alcohol and water-ethyl alcohol. Ind. Eng. Chem. 10 314–318 (1938)

    Google Scholar 

  9. D. Bellet, M. Singelin, C. Thirriot, Determination of thermophysical properties of non-Newtonian liquids using a coaxial cylindrical cell. Int. J. Heat Mass Transf. 18, 1177–1186 (1975)

    Article  Google Scholar 

  10. W.Y. Lee, Y.I. Cho, A. Hartnett, Thermal conductivity measurements of non- Newtonian fluids. Lett. Heat Mass Transf. 8, 255–259 (1981)

    Article  Google Scholar 

  11. A.A. Cocci, J.J.C. Picot, Rate of strain effect on the thermal conductivity of a polymer liquid. Polym. Eng. Sci. 13, 337–341 (1973)

    Article  Google Scholar 

  12. B. Chitranged, J.J.C. Picot, Similarity in orientation effects on thermal conductivity and flow birefringence for polymers: polydimethylsilioxane. Polym. Eng. Sci. 21, 782–786 (1981)

    Article  Google Scholar 

  13. J.J.C. Picot, G.I. Goobie, G.S. Mawhinney, Shear-induced anisotropy in thermal conductivity of a polyethylene melt. Polym. Eng. Sci. 22, 154–157 (1982)

    Article  Google Scholar 

  14. D.J. Wallace, C. Moreland, J.J.C. Picot, Shear dependence on thermal conductivity in polyethylene melts. Polym. Eng. Sci. 25, 70–74 (1985)

    Article  Google Scholar 

  15. T. Loulou, H. Peerhossaini, J.P. Bardon, Experimental study of the thermal conductivity of non-newtonian fluids under shear: application to the solutions of carbopol 940 solutions. Int. J. Heat Mass Transf. 35, 2557–2562 (1992)

    Article  Google Scholar 

  16. S. Shin, The effect of the shear rate-dependent thermal conductivity of non- Newtonian fluids on the heat transfer in a pipe flow. Int. Commun. Heat Mass Transf. 23, 665–678 (1996)

    Article  Google Scholar 

  17. D.-L. Lee, T.F. Irvine, Shear rate dependent thermal conductivity measurements of non-Newtonian fluids. Exp. Therm. Fluid Sci. 15, 16–24 (1997)

    Article  Google Scholar 

  18. M. Kostic, H. Tong, Investigation of Thermal Conductivity of a Polymer Solution as Function of Shearing Rate, HTD-Vol.364-4 (ASME, New York, 1999), pp. 15–21

    Google Scholar 

  19. L. Broniarz-Press, K. Pralat, Thermal conductivity of Newtonian and non-Newtonian liquids. Int. J. Heat Mass Transf. 52, 4701–4710 (2009)

    Article  Google Scholar 

  20. R.S. Figliola, D.E. Beasley, Theory and design for mechanical measurements, 5th edn. (John Wiley, New York, 2000)

    Google Scholar 

  21. W.M. Abed, R.D. Whalley, D.J.C. Dennis, R.J. Poole, Numerical and experimental investigation of heat transfer and fluid flow characteristics in a micro-scale serpentine channel. Int. J. Heat Mass Transf. 88, 790–802 (2015)

    Article  Google Scholar 

  22. O.K. Bates, Thermal conductivity of liquids. Ind. Eng. Chem. 25, 431–437 (1933)

    Article  Google Scholar 

  23. G.W.C. Kaye, W.F. Higgins, The thermal conductivities of certain liquids. Proc. R. Soc. Lond. Ser. A 117, 459–470 (1928)

    Article  ADS  Google Scholar 

  24. W. Yu, D.M. France, J.L. Routbort, S.U.S. Choi, Review and comparison of nanofluid thermal conductivity and heat transfer enhancements. Heat Transf. Eng. 29, 432–460 (2008)

    Article  ADS  Google Scholar 

  25. S. Özerinc, S. Kakac, A.G. Yazıcıoglu, Enhanced thermal conductivity of nanofluids: a state-of-the-art review. Microfluid. Nanofluid. 8, 145–170 (2010)

    Article  Google Scholar 

  26. J.L. White, Principles of polymer engineering rheology (Wiley, New York, 1990)

    Google Scholar 

  27. C.D. Han, Rheology of polymer processing (Academic Press, New York, 1976)

    Google Scholar 

  28. W.M. Abed, R.D. Whalley, D.J.C. Dennis, R.J. Poole, Experimental investigation of the impact of elastic turbulence on heat transfer in a serpentine channel. J. Non-Newton. Fluid Mech. 231, 68–78 (2016)

    Article  Google Scholar 

  29. S.S. Yoo, T.S. Hwang, C.S. Eum, S.C. Bae, Turbulent heat transfer of polyacrylarnide solutions in the thermal entrance region of circular tube flows. Int. J. Heat Mass Transf. 36, 365–370 (1993)

    Article  Google Scholar 

  30. S. Shin, Y.I. Cho, Temperature effect on the non-Newtonian viscosity of an aqueous polyacrylamide solution. Int. Commun. Heat Mass Transf. 20, 831–844 (1993)

    Article  Google Scholar 

  31. M.T. Ghannam, M.N. Esmail, Rheological properties of aqueous polyacrylamide solutions. J. Appl. Polym. Sci. 69, 1587–1597 (1998)

    Article  Google Scholar 

  32. B. Briscoe, P. Luckham, S. Zhu, Rheological properties of poly (ethylene oxide) aqueous solutions. J. Appl. Polym. Sci. 70, 419–429 (1998)

    Article  Google Scholar 

  33. M.P. Escudier, F. Presti, S. Smith, Drag reduction in the turbulent pipe flow of polymers. J. Nonnewton. Fluid Mech. 81, 197–213 (1999)

    Article  MATH  Google Scholar 

  34. M.P. Escudier, I.W. Gouldson, A.S. Pereira, F.T. Pinho, R.J. Poole, On the reproducibility of the rheology of shear-thinning liquids. J. Nonnewton. Fluid Mech. 97, 99–124 (2001)

    Article  MATH  Google Scholar 

  35. M.P. Escudier, A.K. Nickson, R.J. Poole, Turbulent flow of viscoelastic shear-thinning liquids through a rectangular duct: quantification of turbulence anisotropy. J. Nonnewton. Fluid Mech. 160, 2–10 (2009)

    Article  Google Scholar 

  36. A. Japper-Jaafar, M.P. Escudier, R.J. Poole, Laminar, transitional and turbulent annular flow of drag-reducing polymer solutions. J. Nonnewton. Fluid Mech. 165, 1357–1372 (2010)

    Article  Google Scholar 

  37. J. Zilz, C. Schäfer, C. Wagner, R.J. Poole, M.A. Alves, A. Lindner, Serpentine channels: micro-rheometers for fluid relaxation times. Lab Chip 14, 351–358 (2014)

    Article  Google Scholar 

  38. S. Carro, V.J. Gonzalez-Coronel, J. Castillo-Tejas, H. Maldonado-Textle, N. Tepale, Rheological properties in aqueous solution for hydrophobically modified polyacrylamides prepared in inverse emulsion polymerization. Int. J. Polym. Sci. 2017, 1–13 (2017)

    Article  Google Scholar 

  39. A. Sobti, A.P. Toor, R.K. Wanchoo, Oscillatory and steady shear rheological properties of aqueous polyacrylamide solutions. Chem. Data Collect. 17, 356–369 (2018)

    Article  Google Scholar 

  40. K.S. Gandhi, M.C. Williams, Solvent effects on the viscosity of moderately concentrated polymer solutions. J. Polym. Sci. Part C: Polym. Symp. 35, 211–234 (1971)

    Article  Google Scholar 

  41. Y.I. Cho, J.P. Hartnett, Y.S. Park, Solvent effects on the rheology of aqueous polyacrylamide solutions. Chem. Eng. Commun. 21, 369–382 (1983)

    Article  Google Scholar 

  42. H.A. Barnes, J.F. Hutton, K. Walters, An Introduction to Rheology, vol. 3 (Elsevier, Amsterdam, 1989)

    Book  MATH  Google Scholar 

  43. J.P. Hartnett, Y.I. Cho, in Handbook of Heat Transfer, 3rd edn, ed W.M. Rohsenow, J.P. Hartnett, Y.I. Cho (McGraw Hill, New York, 1998)

  44. E.B. Christiansen, S.E. Craig Jr., Heat transfer to pseudoplastic fluids in laminar flow. AIChE J. 8, 154–160 (1962)

    Article  Google Scholar 

  45. D.R. Oliver, V.G. Jenson, Heat transfer to pseudoplastic fluids in laminar flow in horizontal tubes. Chem. Eng. Sci. 19, 115–129 (1964)

    Article  Google Scholar 

  46. J.E. Porter, Heat Transfer at Low Reynolds Number (Institution of Chemical Engineers, London, 1971)

    Google Scholar 

  47. Y.I. Cho, J.P. Harnett, Non-Newtonian fluids in circular pipe flow. Adv. Heat Transf. 15, 59–141 (1982)

    Article  Google Scholar 

  48. R.P. Chhabra, Fluid mechanics and heat transfer with non-Newtonian liquids in mechanically agitated vessels. Adv. Heat Transf. 37, 77–178 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Waleed M. Abed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abed, W.M. Experimental Measurements of Thermal Conductivity for Non-Newtonian Polymeric Fluids Using a Concentric Cylindrical Cell Under Static Conditions. Int J Thermophys 42, 79 (2021). https://doi.org/10.1007/s10765-021-02834-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-021-02834-9

Keywords

Navigation