Skip to main content
Log in

Nucleate and Film Boiling Performance of Ethanol-Based Nanofluids on Horizontal Flat Plate: An Experimental Investigation

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

In this paper, the heat transfer characteristics of nanofluid nucleate and film boiling are studied experimentally. For this purpose, Al2O3 and SiO2 ethanol-based nanofluids prepared with three volumetric concentrations of 0.1 %, 0.3 %, and 0.5 %. The boiling experiments were conducted on a circular and polished copper surface with a diameter of 25 mm. The results showed that the addition of nanoparticles to the base fluid reduced the heat transfer coefficient of nucleate boiling. The critical heat flux of ethanol-based nanofluids was significantly higher than that of pure ethanol. The Al2O3 ethanol-based nanofluid with a volumetric concentration of 0.5 % had the best performance, with a critical heat flux of 42.36 % higher than that of pure ethanol. The presence of nanoparticles in the ethanol-based nanofluid improved the heat transfer coefficient of film boiling. The results showed that the stable film boiling for nanofluids starts at higher wall superheat temperature difference than pure ethanol. Among the investigated concentrations, volumetric concentration of 0.5 % had the best performance for both nanofluids, so that the minimum heat flux of Al2O3 and SiO2 ethanol-based nanofluids were increased by 45.96 % and 45.67 % compared to pure ethanol, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

Notes

  1. Polytetrafluoroethylene.

Abbreviations

C :

Constant coefficient

c p :

Specific heat capacity (J·kg−1·°C−1)

h :

Boiling heat transfer coefficient (W·m−2·°C−1)

i :

Latent heat of evaporation (J·kg−1)

k :

Thermal conductivity (W·m−1·°C−1)

m :

Mass (kg)

q″ :

Heat flux (W·m−2)

T :

Temperature (°C)

U :

Uncertainty

V :

Volume (m3)

Z :

Thermocouples location in cartridge (m)

µ :

Dynamic viscosity (kg·m−1.s−1)

ρ :

Density (kg·m−3)

σ :

Surface tension (N·m−1)

φ :

Volumetric concentration of nanofluid

f:

Saturated liquid

fb:

Film boiling

l:

Liquid

nf:

Nanofluid

np:

Nano particle

s:

Boiling surface

sat:

Saturation

sf:

Solid–Fluid

v:

Vapor

w:

Solid surface (wall)

References

  1. K. Martin, A. Sözen, E. Çiftçi, H.M. Ali, An experimental investigation on aqueous Fe-CuO hybrid nanofluid usage in a plain heat pipe. Int. J. Thermophys. 41, 135 (2020)

    Article  ADS  Google Scholar 

  2. Z. Shahmoradi, N. Etesami, M.N. Esfahany, Pool boiling characteristics of nanofluid on flat plate based on heater surface analysis. Int. Commun. Heat Mass Transf. 47, 113–120 (2013)

    Article  Google Scholar 

  3. M.R. Raveshi, A. Keshavarz, M.S. Mojarrad, S. Amiri, Experimental investigation of pool boiling heat transfer enhancement of alumina-water-ethylene glycol nanofluids. Exp. Therm. Fluid Sci. 44, 805–814 (2013)

    Article  Google Scholar 

  4. V. Umesh, B. Raja, A study on nucleate boiling heat transfer characteristics of pentane and CuO pentane nanofluid on smooth and milled surfaces. Exp. Therm. Fluid Sci. 64, 23–29 (2015)

    Article  Google Scholar 

  5. P. Naphon, Effect of magnetic fields on the boiling heat transfer characteristics of nanofluids. Int. J. Thermophys. 36, 2810–2819 (2015)

    Article  ADS  Google Scholar 

  6. I.S. Kiyomura, L.L. Manetti, A.P. da Cunha, G. Ribatski, E.M. Cardoso, An analysis of the effects of nanoparticles deposition on characteristics of the heating surface and on pool boiling of water. Int. J. Heat Mass Transf. 106, 666–674 (2017)

    Article  Google Scholar 

  7. W.T. Ji, P.F. Zhao, C.Y. Zhao, J. Ding, W.Q. Tao, Pool boiling heat transfer of water and nanofluid outside the surface with higher roughness and different wettability. Nanoscale Microscale Thermophys. Eng. 22(4), 296–323 (2018)

    Article  ADS  Google Scholar 

  8. F.R. Dareh, M. Haghshenasfard, M.N. Esfahany, H.R.S. Jazi, An experimental investigation of pool boiling characteristics of alumina-water nanofluid over micro/nano-structured surfaces. Heat Transf. Eng. 40(20), 1691–1708 (2019)

    Article  ADS  Google Scholar 

  9. M. Mohammadi, M. Khayat, Experimental investigation of the effect of one-dimensional roughened surface on the pool boiling of nanofluids. Sci. Iran. 27(6), 2954–2966 (2020)

    Google Scholar 

  10. D. Vasudevan, D. Senthilkumar, S. Surendhiran, Performance and characterization studies of reduced graphene oxides aqua nanofluids for a pool boiling surface. Int. J. Thermophys. 41, 74 (2020)

    Article  ADS  Google Scholar 

  11. M.S. Kamel, F. Lezsovits, Experimental investigation on pool boiling heat transfer performance using tungsten oxide WO3 nanomaterial-based water nanofluids. Materials 13(8), 1922 (2020)

    Article  ADS  Google Scholar 

  12. J. Gylys, R. Skvorcinskiene, L. Paukstaitis, M. Gylys, A. Adomavicius, Film boiling influence on the spherical body’s cooling in sub-cooled water. Int. J. Heat Mass Transf. 95, 709–719 (2016)

    Article  Google Scholar 

  13. T. Arai, M. Furuya, Effect of nanofluid on the film boiling behavior at vapor film collapse, in Proceedings of the 17th International Conference on Nuclear Engineering (Brussels, Belgium, 2009)

  14. D. Ciloglu, A. Bolukbasi, K. Comakli, Effect of nanofluids on the saturated pool film boiling. World Acad. Sci. Eng. Technol. 6(7), 1112–1124 (2012)

    Google Scholar 

  15. J.Q. Li, L.W. Fan, L. Zhang, Z.T. Yu, An experimental study of boiling heat transfer during quenching of nanofluids with carbon nanotubes of various sizes, in Proceedings of the ASME Heat Transfer Summer Conference (Washington, DC, USA, 2016)

  16. J.Y. Kang, T.K. Kim, G.C. Lee, H.S. Park, M.H. Kim, Minimum heat flux and minimum film-boiling temperature on a completely wettable surface: effect of the Bond number. Int. J. Heat Mass Transf. 120, 399–410 (2018)

    Article  Google Scholar 

  17. S. Wcislik, A simple economic and heat transfer analysis of the nanoparticles use. Chem. Pap. 71(12), 2395–2401 (2017)

    Article  Google Scholar 

  18. V. Talari, P. Behar, Y. Lu, E. Haryadi, D. Liu, Leidenfrost drops on micro/nanostructured surfaces. Front. Energy 12(1), 22–42 (2018)

    Article  Google Scholar 

  19. A. Kalani, S.G. Kandlikar, Enhanced pool boiling with ethanol at subatmospheric pressures for electronics cooling. J. Heat Transf. 135(11), 111002 (2013)

    Article  Google Scholar 

  20. A. Amiri, M. Shanbedi, H. Amiri, S.Z. Heris, S.N. Kazi, B.T. Chew, H. Eshghi, Pool boiling heat transfer of CNT/water nanofluids. Appl. Therm. Eng. 71(1), 450–459 (2014)

    Article  Google Scholar 

  21. D. Zheng, J. Wang, Z. Chen, J. Baleta, B. Sundén, Performance analysis of a plate heat exchanger using various nanofluids. Int. J. Heat Mass Transf. 158, 119993 (2020)

    Article  Google Scholar 

  22. A. Ghadimi, R. Saidur, H.S.C. Metselaar, A review of nanofluid stability properties and characterization in stationary conditions. Int. J. Heat Mass Transf. 54(17–18), 4051–4068 (2011)

    Article  Google Scholar 

  23. J. Shah, M. Ranjan, V. Davariya, S.K. Gupta, Y. Sonvane, Temperature-dependent thermal conductivity and viscosity of synthesized α-alumina nanofluids. Appl. Nanosci. 7, 803–813 (2017)

    Article  ADS  Google Scholar 

  24. S.M. Ghiaasiaan, Two Phase Flow, Boiling and Condensation in Conventional and Miniature Systems (Cambridge University Press, New York, 2008).

    MATH  Google Scholar 

  25. J.G. Hust, A.B. Lankford, Thermal Conductivity of Aluminum, Copper, Iron, and Tungsten for Temperatures from 1 K to the Melting Point (U.S. Department of Commerce, Malcolm Baldrige, CO, 1984).

    Book  Google Scholar 

  26. R.J. Moffat, Describing the uncertainties in experimental results. Exp. Therm. Fluid Sci. 1(1), 3–17 (1988)

    Article  ADS  Google Scholar 

  27. W.M. Rohsenow, A method of correlating heat transfer data for surface boiling liquids. Trans. ASME 74, 969–975 (1952)

    Google Scholar 

  28. B. Shen, T. Hamazaki, W. Ma, N. Iwata, S. Hidaka, A. Takahara, K. Takahashi, Y. Takata, Enhanced pool boiling of ethanol on wettability-patterned surfaces. Appl. Therm. Eng. 149, 325–331 (2019)

    Article  Google Scholar 

  29. N. Zuber, On the stability of boiling heat transfer. Trans. ASME 80, 711–720 (1958)

    Google Scholar 

  30. Z. Liu, L. Liao, Sorption and agglutination phenomenon of nanofluids on a plain heating surface during pool boiling. Int. J. Heat Mass Transf. 51(9–10), 2593–2602 (2008)

    Article  Google Scholar 

  31. S.M. Kwark, M. Amaya, S.M. You, Experimental pool boiling heat transfer study of the nanoporous coating in various fluids. Int. J. Air-Cond. Refrig. 20(1), 1150001 (2012)

    Article  Google Scholar 

  32. P.J. Berenson, Film-boiling heat transfer from a horizontal surface. J. Heat Transf. 83, 351–356 (1961)

    Article  Google Scholar 

  33. L.A. Bromley, Heat transfer in stable film boiling. Chem. Eng. Prog. Symp. Ser. 46, 221–227 (1950)

    Google Scholar 

  34. R.E. Henry, A correlation for the minimum film boiling temperature. Chem. Eng. Prog. Symp. Ser. 70(138), 81–90 (1974)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morteza Khayat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golkar, S.H., Khayat, M. & Zareh, M. Nucleate and Film Boiling Performance of Ethanol-Based Nanofluids on Horizontal Flat Plate: An Experimental Investigation. Int J Thermophys 42, 55 (2021). https://doi.org/10.1007/s10765-021-02805-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-021-02805-0

Keywords

Navigation