Skip to main content
Log in

Accurate Prediction of Thermodynamic Functions of H2 and LiH Using Theoretical Calculations

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Thermodynamic functions of two diatomic molecules gas, H2 and LiH, from theoretical point of view were predicted. The Schrödinger equation was analytically solved with the generalized Morse potential using Nikiforov–Uvarov method. The energy eigenvalues were obtained for the two cases (i) constant effective mass and (ii) position-dependent effective mass. The partition function of two diatomic molecules gases H2 and LiH was analytically obtained. Thermodynamic functions of the gases such as specific heat in constant pressure and volume, entropy, and enthalpy were determined and compared with experimental data. We could find an interesting point from our theoretical calculations. The results indicated that the calculated thermodynamic functions are in agreement with experimental data when the generalized Morse potential with variable mass was considered. This means that one can obtain best theoretical results by setting variable mass parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X.T. Hu, J.Y. Liu, C.S. Jia, Comput. Theor. Chem. 1019, 137 (2013)

    Article  Google Scholar 

  2. P.Q. Wang, J.Y. Liu, L.H. Zhang, S.Y. Cao, C.S. Jia, J. Mol. Spectrosc. 278, 23 (2012)

    Article  ADS  Google Scholar 

  3. J.Y. Liu, G.D. Zhang, C.S. Jia, Phys. Lett. A 377, 1444 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  4. R. Khordad, A. Ghanbari, Comput. Theor. Chem. 1155, 1 (2019)

    Article  Google Scholar 

  5. R. Khordad, A. Avazpour, A. Ghanbari, Chem. Phys. 517, 30 (2019)

    Article  Google Scholar 

  6. C.S. Jia, T. He, Z.W. Shui, Comput. Theor. Chem. 1108, 57 (2017)

    Article  Google Scholar 

  7. C.S. Jia, L.H. Zhang, C.W. Wang, Chem. Phys. Lett. 667, 211 (2017)

    Article  ADS  Google Scholar 

  8. C.S. Jia, C.W. Wang, L.H. Zhang, X.L. Peng, R. Zeng, X.T. You, Chem. Phys. Lett. 676, 150 (2017)

    Article  ADS  Google Scholar 

  9. P. Ammendola, F. Raganati, R. Chirone, Chem. Eng. J. 322, 302 (2017)

    Article  Google Scholar 

  10. J. Bedia, C. Belver, S. Ponce, J. Rodriguez, J.J. Rodriguez, Chem. Eng. J. 333, 58 (2018)

    Article  Google Scholar 

  11. S. Dastidar, C.J. Hawley, A.D. Dillon, A.D. Gutierrez-Perez, J.E. Spanier, A.T. Fafarman, J. Phys. Chem. Lett. 8, 1278 (2017)

    Article  Google Scholar 

  12. V.L. Zherebtsov, M.M. Peganova, Fuel 102, 831 (2012)

    Article  Google Scholar 

  13. C.S. Jia, L.H. Zhang, X.L. Peng, J.X. Luo, Y.L. Zhao, J.Y. Liu, J.J. Guo, L.D. Tang, Chem. Engin. Sci. 202, 70 (2019)

    Article  Google Scholar 

  14. R. Jiang, C.S. Jia, Y.Q. Wang, X.L. Peng, L.H. Zhang, Chem. Phys. Lett. 726, 83 (2019)

    Article  ADS  Google Scholar 

  15. B. Tang, Y.T. Wang, X.L. Peng, L.H. Zhang, C.S. Jia, J. Mol. Struct. 1199, 126958 (2020)

    Article  Google Scholar 

  16. X.Y. Chen, J. Li, C.S. Jia, ACS Omega 4, 16121 (2019)

    Article  Google Scholar 

  17. National Institute of Standards and Technology (NIST), NIST Chemistry WebBook, NIST Standard Reference Database Number 69, 2017. (http://Webbook.nist.gov/chemistry/)

  18. X.Q. Song, C.W. Wang, C.S. Jia, Chem. Phys. Lett. 673, 50 (2017)

    Article  ADS  Google Scholar 

  19. C.S. Jia, C.W. Wang, L.H. Zhang, X.L. Peng, H.M. Tang, J.Y. Liu, Y. Xiong, R. Zeng, Chem. Phys. Lett. 692, 57 (2018)

    Article  ADS  Google Scholar 

  20. C.S. Jia, Y.F. Diao, X.J. Liu, P.Q. Wang, J.Y. Liu, G.D. Zhang, J. Chem. Phys. 137, 014101 (2012)

    Article  ADS  Google Scholar 

  21. C.S. Jia, R. Zeng, X.L. Peng, L.H. Zhang, Y.L. Zhao, Chem. Eng. Sci. 190, 1 (2018)

    Article  Google Scholar 

  22. X.L. Peng, R. Jiang, C.S. Jia, L.H. Zhang, Y.L. Zhao, Chem. Eng. Sci. 190, 122 (2018)

    Article  Google Scholar 

  23. C.S. Jia, C.W. Wang, L.H. Zhang, X.L. Peng, H.M. Tang, R. Zeng, Chem. Eng. Sci. 183, 26 (2018)

    Article  Google Scholar 

  24. M. Deng, C.S. Jia, Eur. Phys. J. Plus 133, 258 (2018)

    Article  Google Scholar 

  25. J.F. Wang, X.L. Peng, L.H. Zhang, C.W. Wang, C.S. Jia, Chem. Phys. Lett. 686, 131 (2017)

    Article  ADS  Google Scholar 

  26. R. Jiang, C.S. Jia, Y.Q. Wang, X.L. Peng, L.H. Zhang, Chem. Phys. Lett. 715, 186 (2019)

    Article  ADS  Google Scholar 

  27. C.S. Jia, X.T. You, J.Y. Liu, L.H. Zhang, X.L. Peng, Y.T. Wang, L.S. Wei, Chem. Phys. Lett. 717, 16 (2019)

    Article  ADS  Google Scholar 

  28. M. Buchowiecki, Mol. Phys. 117, 1640 (2019)

    Article  ADS  Google Scholar 

  29. S.M. Ikhdair, R. Sever, J. Mol. Struct. Theochem. 855, 13 (2008)

    Article  Google Scholar 

  30. M. Mosca, Quantum algorithms Computational Complexity (Springer, New York, 2012)

    Google Scholar 

  31. G.H. Sun, S.H. Dong, Commun. Theor. Phys. 58, 195 (2012)

    Article  Google Scholar 

  32. H. Hassanabadi, B.H. Yazarloo, S. Zarrinkamar, H. Rahimov, Commun. Theor. Phys. 57, 339 (2011)

    Article  ADS  Google Scholar 

  33. A.F. Nikiforov, V.B. Uvarov, Special function of mathematical physics (Birkhauser, Bassel, 1988)

    Book  MATH  Google Scholar 

  34. G. Szego, Orthogonal polynomials (American Mathematical Society, New York, 1959)

    MATH  Google Scholar 

  35. A. Soylu, O. Bayrak, I. Boztosun, J. Phys. A Math. Theor. 41, 065308 (2008)

    Article  ADS  Google Scholar 

  36. C.S. Jia, P. Gao, X.L. Peng, J. Phys. A 39, 7737 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  37. L.H. Zhang, X.P. Li, C.S. Jia, Phys. Lett. A 372, 2201 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  38. A. Arda, R. Sever, Int. J. Mod. Phys. A 24, 3985 (2009)

    Article  ADS  Google Scholar 

  39. S.M. Ikhdair, Int. J. Mod. Phys. C 20, 1563 (2009)

    Article  ADS  Google Scholar 

  40. L. Das, Int. J. Hydrog. Energy 27, 479 (2002)

    Article  Google Scholar 

  41. D.D. Mahdi, F.G. Mahmood, R.H. Reza, Theor. Found. Chem. Eng. 52, 465 (2018)

    Article  Google Scholar 

  42. S. Fluge, Practical quantum mechanics I (Springer, Berlin, 1971)

    Book  Google Scholar 

  43. I. Nasser, M.S. Abdelmonem, H. Bahlouli, A.D. Alhaidari, J. Phys. B 40, 4245 (2007)

    Article  ADS  Google Scholar 

  44. P.M. Morse, Phys. Rev. 34, 57 (1929)

    Article  ADS  Google Scholar 

  45. A. Arda, R. Sever, Commun. Theor. Phys. 56, 51 (2011)

    Article  ADS  Google Scholar 

  46. O. von Roos, Phys. Rev. B 27, 7547 (1981)

    Article  Google Scholar 

  47. A.S. Dutra, C.A.S. Almeida, Phys. Lett. A 275, 25 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  48. S. Laachir, A. Laaribi, Int. J. Math. Comput. Sci. 7, 170 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Khordad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Servatkhah, M., Khordad, R. & Ghanbari, A. Accurate Prediction of Thermodynamic Functions of H2 and LiH Using Theoretical Calculations. Int J Thermophys 41, 37 (2020). https://doi.org/10.1007/s10765-020-2615-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-020-2615-0

Keywords

Navigation