Skip to main content
Log in

Measurement and Uncertainty Assessment of the Thermal Conductivity and Diffusivity of Silica Glass using Step-Wise Transient Method

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

This paper investigates the accuracy of the step-wise transient (SWT) method and proposes a modified model that embodies the real-world experimental setup. The presented model incorporates all the imperfections of the thermocouple and heater, such as the thermal capacity and thermal contact resistance with the specimen. The viability of the proposed hypothesis was confirmed via the experiment simulation for soda-lime-silica glass material. The total uncertainty of the thermal conductivity and diffusivity measurement was assessed by combining all the associated errors: model, random, and measurement errors in input parameters. The scope of this work concentrates on one particular material, which can be potentially used as a reference material for calibrating other characterization methods. The results of thermal conductivity and diffusivity were λ = 1.017 W·m−1·K−1 and a = 0.507 mm2·s−1 with total standard uncertainties 0.6 % and 0.4 %, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M. Mirhosseini, A. Rezania, L. Rosendahl, J. Clean. Prod. 232, 1321 (2019)

    Article  Google Scholar 

  2. K. Merlin, J. Soto, D. Delaunay, L. Traonvouez, Appl. Energy 183, 491 (2016)

    Article  Google Scholar 

  3. A. Elkholy, R. Kempers, Exp. Therm. Fluid Sci. 118, 110170 (2020)

    Article  Google Scholar 

  4. A. Elkholy, R. Kempers, ASME 2019 International Mechanical Engineering Congress and Exposition (IMECE), vol. 59452, V008T09A085 (2019)

  5. R. Speyer, Thermal Analysis of Materials (CRC, Boca Raton, 1993)

  6. R. Kempers, P. Kolodner, A. Lyons, A.J. Robinson, Rev. Sci. Instrum. 80, 95111 (2009)

    Article  Google Scholar 

  7. R.R. Zarr, E.S. Lagergren, J. Test. Eval. 27, 357 (1999)

    Article  Google Scholar 

  8. ASTM Standard, E1461 (2013)

  9. A. Elkholy, H. Sadek, R. Kempers, Int. J. Therm. Sci. 135, 362 (2019)

    Article  Google Scholar 

  10. ISO Standard, 22007-2 (2008)

  11. E. Karawacki, B.M. Suleiman, Meas. Sci. Technol. 2, 744 (1991)

    Article  ADS  Google Scholar 

  12. S. Malinarič, P. Dieška, P. Krupa, Int. J. Thermophys. 33, 528 (2012)

    Article  ADS  Google Scholar 

  13. S. Malinarič, Meas. Sci. Technol. 27, 035601 (2016)

    Article  ADS  Google Scholar 

  14. P. Koniorczyk et al., Thermochim. Acta 682, 178429 (2019)

    Article  Google Scholar 

  15. P. Koniorczyk et al., Thermochim. Acta 681, 178376 (2019)

    Article  Google Scholar 

  16. Z. Lei et al., J. Heat Transf. 132, 032601 (2009)

    Article  Google Scholar 

  17. S.E. Gustafsson, 32th Int. Conf. on Thermal Conductivity/20th Int. Thermal Expansion Symp, vol. 1 (2014)

  18. ASTM Standard, C1113/C1113M-09 (2013)

  19. U. Hammerschmidt, V. Meier, Int. J. Thermophys. 27, 840 (2006)

    Article  ADS  Google Scholar 

  20. X.-F. Li, K. Yue, X.-X. Zhang, ASME Int. Mech. Eng. Congr. Expo., vol. 56369, V08CT09A067 (2013)

  21. G. Milano, F. Scarpa, F. Righini, G. Bussolino, Int. J. Thermophys. 22, 1227 (2001)

    Article  Google Scholar 

  22. S. Malinarič, P. Dieška, AIP Conf. Proc., vol. 2275, p. 020019 (2020)

  23. Z. Lei, S. Zhu, N. Pan, Polym. Test. 28, 307 (2009)

    Article  Google Scholar 

  24. S. Malinarič, P. Dieška, Int. J. Thermophys. 37, 1 (2016)

    Article  Google Scholar 

  25. L. Kubičár, V. Boháč, Meas. Sci. Technol. 11, 252 (2000)

    Article  ADS  Google Scholar 

  26. L. Kubičar, V. Bohač, Therm. Conduct. 24, 135 (1999)

    Google Scholar 

  27. S. Malinarič, P. Dieška, in AIP Conf. Proc., vol. 1988, p. 020028 (2018)

  28. S. Malinarič, P. Dieška, AIP Conf. Proc., vol. 1752, p. 040019 (2016)

  29. S. Malinarič, P. Dieška, AIP Conf. Proc., vol. 1866, p. 040025 (2017)

  30. I. Bipm, I. Ifcc, I. Iso, O. Iupap, Jt. Comm. Guid. Metrol. (JCGM) 100, 167 (2008)

    Google Scholar 

  31. U. Hammerschmidt, W. Sabuga, Int. J. Thermophys. 21, 217 (2000)

    Article  Google Scholar 

  32. S. Malinarič, Meas. Sci. Technol. 15, 807 (2004)

    Article  ADS  Google Scholar 

  33. J.P. Bentley, J. Phys. E. 17, 430 (1984)

    Article  ADS  Google Scholar 

  34. E. Karawacki, B.M. Suleiman, I. ul-Haq, B. Nhi, Rev. Sci. Instrum. 63, 4390 (1992)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Svetozár Malinarič.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malinarič, S., Elkholy, A. Measurement and Uncertainty Assessment of the Thermal Conductivity and Diffusivity of Silica Glass using Step-Wise Transient Method. Int J Thermophys 42, 36 (2021). https://doi.org/10.1007/s10765-020-02787-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-020-02787-5

Keywords

Navigation