Skip to main content
Log in

Characterization of Solar Absorber Coated by Reduced Graphene Oxide Polymer Composite on Metal Sheets

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

This paper presents the characterization of solar heat absorber coatings on metal sheets using reduced graphene oxide polymer composites. The reduced graphene oxide (rGO) polymer composite material was evenly coated by the silk-screen method on three types of metal sheets. The thickness of the coated sheet samples was 0.25 mm which were exposed under solar radiation and the variations in temperatures versus time were recorded. The influence of solar radiation and angle of incidence during peak hours was recorded. The results show that stainless steel coated by rGO absorber gain more heat than other metal sheet absorbers. These coatings have a promising scope in solar thermal applications and the technique is cost-effective to characterize efficient solar absorber coatings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. N.P. Sergeant, M. Agrawal, P. Peumans. Design of selective coatings for solar thermal applications using sub-wavelength metal-dielectric structures, in Optical Modeling and Measurements for Solar Energy Systems III. (International Society for Optics and Photonics, 2009)

  2. C.E. Kennedy, Review of Mid-to High-Temperature Solar Selective Absorber Materials (National Renewable Energy Lab, Golden, 2002).

    Book  Google Scholar 

  3. O. Pincon, M. Agrawal, P. Peumans, Opt. Express 17, 22800 (2009)

    Article  ADS  Google Scholar 

  4. N.P. Sergeant, O. Pincon, M. Agrawal, P. Peumans, Opt. Express 17, 22800–22812 (2009)

    Article  ADS  Google Scholar 

  5. B.C. Thompson, E. Murray, G.G. Wallace, Adv. Mater. 27, 7563–7582 (2015)

    Article  Google Scholar 

  6. M.I. Ionescu, X. Sun, B. Luan, Can. J. Chem. 93, 160–164 (2015)

    Article  Google Scholar 

  7. H. Yang, Q. Wang, Y. Huang, J. Feng, X. Ao, M. Hu, G. Pei, Energy. 183, 639–650 (2019)

    Article  Google Scholar 

  8. S. Chandramohan, K. Bok Ko, J. Han Yang, B. Deul Ryu, Y. Katharria, T. Yong Kim, B. Jin Cho, C.-H. Hong, J. Appl. Phys. 115, 054503 (2014)

    Article  ADS  Google Scholar 

  9. P. Yu, X. Chen, Z. Yi, Y. Tang, H. Yang, Z. Zhou, T. Duan, S. Cheng, J. Zhang, Y. Yi, Opt. Mater. 97, 109400 (2019)

    Article  Google Scholar 

  10. A. Jaikumar, A. Rishi, A. Gupta, S.G. Kandlikar, J. Heat Transf. 139, 111509 (2017)

    Article  Google Scholar 

  11. X. Ji, Y. Xu, W. Zhang, L. Cui, J. Liu, Compos. A Appl. Sci. Manuf. 87, 29–45 (2016)

    Article  Google Scholar 

  12. C. Lee, X. Wei, J.W. Kysar, J. Hone, Science 321, 385–388 (2008)

    Article  ADS  Google Scholar 

  13. P.T. Yin, S. Shah, M. Chhowalla, K.-B. Lee, Chem. Rev. 115, 2483–2531 (2015)

    Article  Google Scholar 

  14. G.B. Olowojoba, S. Kopsidas, S. Eslava, E.S. Gutierrez, A.J. Kinloch, C. Mattevi, V.G. Rocha, A.C. Taylor, J. Mater. Sci. 52, 7323–7344 (2017)

    Article  ADS  Google Scholar 

  15. H. Yang, C. Shan, F. Li, Q. Zhang, D. Han, L. Niu, J. Mater. Chem. 19, 8856–8860 (2009)

    Article  Google Scholar 

  16. S. Stankovich, R.D. Piner, X. Chen, N. Wu, S.T. Nguyen, R.S. Ruoff, J. Mater. Chem. 16, 155–158 (2006)

    Article  Google Scholar 

  17. V. Lotito, T. Zambelli, Adv. Coll. Interface. Sci. 246, 217–274 (2017)

    Article  Google Scholar 

  18. A. Attanzio, Carbon nanostructures-quantum dot hybrids: self-assembly and photo-physical investigations of single-molecule hetero structures. Ph.D. Thesis, Queen Mary University of London, UK, 2018

  19. M.A. Boles, M. Engel, D.V. Talapin, Chem. Rev. 116, 11220–11289 (2016)

    Article  Google Scholar 

  20. R.V. Morgan, R.S. Reid, A.M. Baker, B. Lucero, J.D. Bernardin, Emissivity Measurements of Additively Manufactured Materials (Los Alamos National LabLANL, Los Alamos, 2017).

    Book  Google Scholar 

  21. Thermtest, Materials Thermal Properties Database (Thermtest Intruments, Richibucto Road, 2020).

    Google Scholar 

  22. T. Innovations, Conductive Materials, Metals and Stainless Steels Properties Table (TIBTECH Innovations, Roncq, 2020).

    Google Scholar 

  23. J. Fei, W. Dou, G. Zhao, Microchim. Acta 183, 757–764 (2016)

    Article  Google Scholar 

  24. S. Kodeeswaran, T. Ramkumar, R. J. Ganesh. Precise temperature control using reverse seebeck effect, in 2017 International Conference on Power and Embedded Drive Control (ICPEDC) (IEEE, 2007)

Download references

Acknowledgements

One of the authors is thankful to the Higher Education Commission (HEC), Pakistan and the support of higher administration of KFUEIT, Rahim Yar Khan, Pakistan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hewa Y. Abdullah.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

figure a
figure b

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iqbal, S.M.Z., Qadir, K.W., Abdullah, H.Y. et al. Characterization of Solar Absorber Coated by Reduced Graphene Oxide Polymer Composite on Metal Sheets. Int J Thermophys 42, 33 (2021). https://doi.org/10.1007/s10765-020-02785-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-020-02785-7

Keywords

Navigation