Skip to main content
Log in

Predicting As\(_{x}\)Se\(_{1-x}\) Glass Transition Onset Temperature

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The As–Se glass is a large subgroup in the class of chalcogenide glass, which is widely used in electronics and photonics. Glass transition onset temperature, \(T_{g}\), is an important thermal parameter that needs to be considered during manufacturing and practical applications. Numerous experimental and theoretical approaches have been conducted to investigate \(T_{g}\), but they tend to be resource-intensive and complicated. In this study, we develop the multivariate linear regression model to shed light on the relationship between physical attributes and As\(_{x}\)Se\(_{1-x}\)\(T_{g}\). The model is simple and highly accurate that contributes to fast estimations of \(T_{g}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. M. Li, Z. Wang, Y. Wang, J. Li, D. Viehland, Giant magnetoelectric effect in self-biased laminates under zero magnetic field. Appl. Phys. Lett. 102, 082404 (2013)

    Article  ADS  Google Scholar 

  2. W. Guo, R. Kirste, Z. Bryan, I. Bryan, M. Gerhold, R. Collazo, Z. Sitar, Nanostructure surface patterning of GaN thin films and application to AlGaN/AlN multiple quantum wells: A way towards light extraction efficiency enhancement of III-nitride based light emitting diodes. J. Appl. Phys. 117, 113107 (2015)

    Article  ADS  Google Scholar 

  3. B.J. Eggleton, B. Luther-Davies, K. Richardson, Chalcogenide photonics. Nat. Photon. 5, 141 (2011)

    Article  ADS  Google Scholar 

  4. Y. Liu, J. Wu, G. Yang, T. Zhao, S. Shi, Predicting the onset temperature (Tg) of Ge\(_{x}\)Se\(_{1-x}\) glass transition: a feature selection based two-stage support vector regression method. Sci. Bull. 64, 1195–1203 (2019)

    Article  Google Scholar 

  5. A.R. Hilton, S. Kemp, Chalcogenide glasses for infrared optics (McGraw-Hill, New York, 2010)

    Google Scholar 

  6. G. Yang, B. Bureau, T. Rouxel, Y. Gueguen, O. Gulbiten, C. Roiland, E. Soignard, J.L. Yarger, J. Troles, J.C. Sangleboeuf, P. Lucas, Correlation between structure and physical properties of chalcogenide glasses in the As\(_{x}\)Se\(_{1-x}\) system. Phys. Rev. B 82, 195206 (2010)

    Article  ADS  Google Scholar 

  7. U. Senapati, A.K. Varshneya, Configurational arrangements in chalcogenide glasses: A new perspective on Phillips’ constraint theory. J. Non-Cryst. Solids 185, 289–296 (1995)

    Article  ADS  Google Scholar 

  8. M.F. Thorpe, D.J. Jacobs, B.R. Djordjevic, The Structure and Rigidity. Insulat. Semiconduct. Glasses 17, 95 (2000)

    Article  Google Scholar 

  9. J. Schwartz, C.C. Koch, Y. Zhang, X. Liu, “Formation of bismuth strontium calcium copper oxide superconductors,” U.S. Patent US9773962B2, September 26, (2017) https://patentimages.storage.googleapis.com/dd/a0/5d/f73e3aa9c2eae4/US9773962.pdf

  10. Y. Zhang, S. Johnson, G. Naderi, M. Chaubal, A. Hunt, J. Schwartz, High critical current density Bi\(_{2}\)Sr\(_{2}\)CaCu\(_{2}\)O \(_{x}\)/Ag wire containing oxide precursor synthesized from nano-oxides. Supercond. Sci. Technol. 29, 095012 (2016). https://doi.org/10.1088/0953-2048/29/9/095012

    Article  ADS  Google Scholar 

  11. Y. Zhang, C.C. Koch, J. Schwartz, Formation of Bi\(_{2}\)Sr\(_{2}\)CaCu\(_{2}\)O \(_{x}\)/Ag multifilamentary metallic precursor powder-in-tube wires. Supercond. Sci. Technol. 29, 125005 (2016). https://doi.org/10.1088/0953-2048/29/12/125005

    Article  ADS  Google Scholar 

  12. Y. Zhang, C.C. Koch, J. Schwartz, Synthesis of Bi\(_{2}\)Sr\(_{2}\)CaCu\(_{2}\)O\(_{x}\) superconductors via direct oxidation of metallic precursors. Supercond. Sci. Technol. 27, 055016 (2014). https://doi.org/10.1088/0953-2048/27/5/055016

    Article  ADS  Google Scholar 

  13. K.S. Schweizer, E.J. Saltzman, Theory of dynamic barriers, activated hopping, and the glass transition in polymer melts. J. Chem. Phys. 121, 1984–2000 (2004)

    Article  ADS  Google Scholar 

  14. H. Song, F. Hunte, J. Schwartz, On the role of pre-existing defects and magnetic flux avalanches in the degradation of YBa\(_{2}\)Cu\(_{3}\)O\(_{7-x}\) coated conductors by quenching. Acta Materialia 60, 6991–7000 (2012)

    Article  Google Scholar 

  15. C. Bennemann, W. Paul, K. Binder, B. Dünweg, Molecular-dynamics simulations of the thermal glass transition in polymer melts: \(\alpha\)-relaxation behavior. Phys. Rev. E 57, 843 (1998)

    Article  ADS  Google Scholar 

  16. Y. Wang, J. Zheng, Z. Zhu, M. Zhang, W. Yuan, Quench behavior of high-temperature superconductor (RE) Ba2Cu3O \(\times\) CORC cable. J. Phys. D 52, 345303 (2019)

    Article  Google Scholar 

  17. J.S. Vrentas, J.L. Duda, A free-volume interpretation of the influence of the glass transition on diffusion in amorphous polymers. J. Appl. Polym. Sci. 22, 2325–2339 (1978)

    Article  Google Scholar 

  18. Y. Zhang, X. Xu, Yttrium barium copper oxide superconducting transition temperature modeling through Gaussian process regression. Comput. Mater. Sci. 179, 109583 (2020). https://doi.org/10.1016/j.commatsci.2020.109583

    Article  Google Scholar 

  19. Y. Zhang, X. Xu, Relative cooling power modeling of lanthanum manganites using Gaussian process regression. RSC Adv. 10, 20646–20653 (2020). https://doi.org/10.1039/D0RA03031G

    Article  Google Scholar 

  20. Y. Zhang, X. Xu, Machine learning lattice constants for orthorhombic perovskite ABO\(_{3}\) compounds. ACS Combinatorial Science (2020)

  21. Y. Zhang, X. Xu, Lattice misfit predictions via the Gaussian process regression for Ni-based single crystal superalloys. Metals and Materials International (2020)

  22. Y. Zhang, X. Xu, Machine learning lattice constants from ionic radii and electronegativities for cubic perovskite \(A_{2}XY_{6}\) compounds. Phys Chem Minerals 47, 39 (2020). https://doi.org/10.1007/s00269-020-01108-4

    Article  ADS  Google Scholar 

  23. P.K. Gupta, J.C. Mauro, Composition dependence of glass transition temperature and fragility. I. A topological model incorporating temperature-dependent constraints. J. Chem. Phys. 130, 094503 (2009)

    Article  ADS  Google Scholar 

  24. Y. Liu, T. Zhao, G. Yang, W. Ju, S. Shi, The onset temperature (\(T_{g}\)) of As\(_{x}\)Se\(_{1-x}\) glasses transition prediction: A comparison of topological and regression analysis methods. Comput. Mater. Sci. 140, 315–321 (2017)

    Article  Google Scholar 

  25. Y. Zhang, X. Xu, Predicting doped MgB\(_{2}\) superconductor critical temperature from lattice parameters using Gaussian process regression. Physica C 573, 1353633 (2020). https://doi.org/10.1016/j.physc.2020.1353633

    Article  ADS  Google Scholar 

  26. Y. Zhang, X. Xu, Curie temperature modeling of magnetocaloric lanthanum manganites using Gaussian process regression. J. Magn. Magn. Mater. 512, 166998 (2020). https://doi.org/10.1016/j.jmmm.2020.166998

    Article  Google Scholar 

  27. Y. Zhang, X. Xu, Machine learning the magnetocaloric effect in manganites from lattice parameters. Appl. Phys. A 126, 341 (2020). https://doi.org/10.1007/s00339-020-03503-8

    Article  ADS  Google Scholar 

  28. Y. Zhang, X. Xu, Machine learning the magnetocaloric effect in manganites from compositions and structural parameters. AIP Adv. 10, 035220 (2020). https://doi.org/10.1063/1.5144241

    Article  ADS  Google Scholar 

  29. Y. Zhang, X. Xu, Predicting the thermal conductivity enhancement of nanofluids using computational intelligence. Phys. Lett. A 384, 126500 (2020). https://doi.org/10.1016/j.physleta.2020.126500

    Article  Google Scholar 

  30. Y. Zhang, X. Xu, Machine learning modeling of lattice constants for half-Heusler alloys. AIP Adv. 10, 045121 (2020). https://doi.org/10.1063/5.0002448

    Article  ADS  Google Scholar 

  31. Y. Zhang, X. Xu, Machine learning optical band gaps of doped-ZnO films. Optik 217, 164808 (2020). https://doi.org/10.1016/j.ijleo.2020.164808

    Article  ADS  Google Scholar 

  32. Y. Zhang, X. Xu, Machine learning band gaps of doped-TiO\(_{2}\) photocatalysts from structural and morphological parameters. ACS Omega 5, 15344–15352 (2020). https://doi.org/10.1021/acsomega.0c01438

    Article  Google Scholar 

  33. Y. Zhang, X. Xu, Machine learning lattice constants for cubic perovskite \(A_{2}XY_{6}\) compounds. J. Solid State Chem. 291, 121558 (2020). https://doi.org/10.1016/j.jssc.2020.121558

    Article  Google Scholar 

  34. Y. Zhang, X. Xu, Machine learning lattice constants for cubic perovskite \(A_{2}^{2+}BB^{\prime }O_{6}\) compounds. Cryst Eng Comm (2020)

  35. Y. Zhang, X. Xu, Machine learning lattice constants for cubic perovskite \(ABX_{3}\) compounds. ChemistrySelect 5, 9999–10009 (2020). https://doi.org/10.1002/slct.202002532

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Xu, X. Predicting As\(_{x}\)Se\(_{1-x}\) Glass Transition Onset Temperature. Int J Thermophys 41, 149 (2020). https://doi.org/10.1007/s10765-020-02734-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-020-02734-4

Keywords

Navigation