Skip to main content
Log in

Measurements and Correlations of the Thermal Conductivity of Three Polyol Esters and a Polyol Ester-Based Lubricant

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

This work describes measurements of the thermal conductivity of three polyol esters pentaerythritol tetrapentanoate (POE5), pentaerythritol tetraheptanoate (POE7), pentaerythritol tetranonanoate (POE9), and a fully qualified lubricant meeting military specification MIL-PRF-23699 with a transient hot-wire method. Correlations for the thermal conductivity based on the measurements are also provided. The expanded relative uncertainty of the measurements with a coverage factor of k = 2, approximately a 95 % confidence interval, is mostly 0.5 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. K.N. Marsh, M.E. Kandil, Fluid Phase Equilib. 199, 319 (2002). https://doi.org/10.1016/s0378-3812(02)00025-0

    Article  Google Scholar 

  2. T. Sugii, E. Ishii, F. Muller-Plathe, J. Phys. Chem. B 119, 12274 (2015). https://doi.org/10.1021/acs.jpcb.5b06459

    Article  Google Scholar 

  3. H.G. Jeon, S.D. Oh, Y.Z. Lee, Wear 267, 1252 (2009). https://doi.org/10.1016/j.wear.2008.12.097

    Article  Google Scholar 

  4. R.H. Schlosberg, J.W. Chu, G.A. Knudsen, E.N. Suciu, H.S. Aldrich, Lubr. Eng. 57, 21 (2001)

    Google Scholar 

  5. T.J. Bruno, T.J. Fortin, M.L. Huber, L. Laesecke, E.W. Lemmon, E. Mansfield, M.O. McLinden, S.L. Outcalt, R.A. Perkins, K.N. Urness, J.A. Widegren, Thermophysical properties of polyol ester lubricants. NISTIR (2019). https://doi.org/10.6028/NIST.IR.8263

    Article  Google Scholar 

  6. S.L. Outcalt, Energy Fuels 32, 3775 (2018). https://doi.org/10.1021/acs.energyfuels.8b00050

    Article  Google Scholar 

  7. T.J. Fortin, J. Chem. Eng. Data 63, 4325 (2018). https://doi.org/10.1021/acs.jced.8b00358

    Article  Google Scholar 

  8. L. Laesecke, C. Junker, D.S. Lauria, J. Res. Natl. Inst. Stan. 124, 124002 (2019). https://doi.org/10.6028/jres.124.002

    Article  Google Scholar 

  9. K.N. Urness, R.V. Gough, J.A. Widegren, T.J. Bruno, Energy Fuels 30, 10161 (2016). https://doi.org/10.1021/acs.energyfuels.6b01863

    Article  Google Scholar 

  10. MIL-PRF-23699, Performance specification. Lubricating oil, aircraft turbine engine, synthetic base, NATO code number O-156, (1997)

  11. R.A. Perkins, H.M. Roder, C.A. Nieto de Castro, J. Res. Natl. Inst. Stand. Technol. 96, 247 (1991). https://doi.org/10.6028/jres.096.014

    Article  Google Scholar 

  12. J.J. Healy, J.J. DeGroot, J. Kestin, Physica 82C, 392 (1976). https://doi.org/10.1016/0378-4363(76)90203-5

    Article  Google Scholar 

  13. P.L. Woodfield, J. Fukai, M. Fujii, Y. Takata, K. Shinzato, Int. J. Thermophys. 29, 1278 (2008). https://doi.org/10.1007/s10765-008-0469-y

    Article  ADS  Google Scholar 

  14. R. Hellmann, Chem. Phys. Letters 613, 133 (2014). https://doi.org/10.1016/j.cplett.2014.08.057

    Article  ADS  Google Scholar 

  15. R. Hellmann, J. Chem. Phys. 146, 114304 (2017). https://doi.org/10.1063/1.4978412

    Article  ADS  Google Scholar 

  16. R. Hellmann, J. Chem. Eng. Data 63, 470 (2018). https://doi.org/10.1021/acs.jced.7b01069

    Article  Google Scholar 

  17. M.L. Huber, Models for the viscosity, thermal conductivity, and surface tension of selected pure fluids as implemented in REFPROP v10.0. NISTIR (2018). https://doi.org/10.6028/NIST.IR.8209

    Article  Google Scholar 

  18. J.F. Ely, H.J.M. Hanley, Ind. Eng. Chem. Fundam. 22, 90 (1983). https://doi.org/10.1021/i100009a016

    Article  Google Scholar 

  19. R.A. Perkins, M.L. Huber, M.J. Assael, J. Chem. Eng. Data 63, 2783 (2018). https://doi.org/10.1021/acs.jced.8b00132

    Article  Google Scholar 

  20. R.A. Perkins, M.L. Huber, J. Chem. Eng. Data 56, 4868 (2011). https://doi.org/10.1021/je200811n

    Article  Google Scholar 

  21. R.A. Perkins, M.L. Huber, M.J. Assael, J. Chem. Eng. Data 62, 2659 (2017). https://doi.org/10.1021/acs.jced.7b00106

    Article  Google Scholar 

  22. S.A. Monogenidou, M.J. Assael, M.L. Huber, J. Phys. Chem. Ref. Data 47, 013103 (2018). https://doi.org/10.1063/1.5021459

    Article  ADS  Google Scholar 

  23. S.A. Monogenidou, M.J. Assael, M.L. Huber, J. Phys. Chem. Ref. Data 47, 043101 (2018). https://doi.org/10.1063/1.5053087

    Article  ADS  Google Scholar 

  24. G.A. Olchowy, J.V. Sengers, Phys. Rev. Lett. 61, 15 (1988). https://doi.org/10.1103/PhysRevLett.61.15

    Article  ADS  Google Scholar 

  25. G.A. Olchowy, J.V. Sengers, Int. J. Thermophys. 10, 417 (1989). https://doi.org/10.1007/BF01133538

    Article  ADS  Google Scholar 

  26. R. Krauss, V.C. Weiss, T.A. Edison, J.V. Sengers, K. Stephan, Int. J. Thermophys. 17, 731 (1996). https://doi.org/10.1007/BF01439187

    Article  ADS  Google Scholar 

  27. R.A. Perkins, J.V. Sengers, I.M. Abdulagatov, M.L. Huber, Int. J. Thermophys. 34, 191 (2013). https://doi.org/10.1007/s10765-013-1409-z

    Article  ADS  Google Scholar 

  28. P.T. Boggs, R.H. Byrd, J.E. Rogers, R.B. Schnabel, (ODRPACK, Software for Orthogonal Distance Regression, National Institute of Standards and Technology, Gaithersburg, MD USA, 1992)

Download references

Acknowledgments

The authors thank James McDonnell and Dawn Schmidt of the U.S. Naval Air Systems Command (NAVAIR) for partial funding for this work and providing the lubricant samples. Contribution of the National Institute of Standards and Technology, not subject to copyright in the USA. Commercial equipment, instruments, or materials are identified only to adequately specify certain procedures. Such identification does not imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the identified products are necessarily the best available for the purpose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard A. Perkins.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 214 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perkins, R.A., Huber, M.L. Measurements and Correlations of the Thermal Conductivity of Three Polyol Esters and a Polyol Ester-Based Lubricant. Int J Thermophys 41, 153 (2020). https://doi.org/10.1007/s10765-020-02729-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-020-02729-1

Keywords

Navigation