Abstract
This work describes measurements of the thermal conductivity of three polyol esters pentaerythritol tetrapentanoate (POE5), pentaerythritol tetraheptanoate (POE7), pentaerythritol tetranonanoate (POE9), and a fully qualified lubricant meeting military specification MIL-PRF-23699 with a transient hot-wire method. Correlations for the thermal conductivity based on the measurements are also provided. The expanded relative uncertainty of the measurements with a coverage factor of k = 2, approximately a 95 % confidence interval, is mostly 0.5 %.
Similar content being viewed by others
References
K.N. Marsh, M.E. Kandil, Fluid Phase Equilib. 199, 319 (2002). https://doi.org/10.1016/s0378-3812(02)00025-0
T. Sugii, E. Ishii, F. Muller-Plathe, J. Phys. Chem. B 119, 12274 (2015). https://doi.org/10.1021/acs.jpcb.5b06459
H.G. Jeon, S.D. Oh, Y.Z. Lee, Wear 267, 1252 (2009). https://doi.org/10.1016/j.wear.2008.12.097
R.H. Schlosberg, J.W. Chu, G.A. Knudsen, E.N. Suciu, H.S. Aldrich, Lubr. Eng. 57, 21 (2001)
T.J. Bruno, T.J. Fortin, M.L. Huber, L. Laesecke, E.W. Lemmon, E. Mansfield, M.O. McLinden, S.L. Outcalt, R.A. Perkins, K.N. Urness, J.A. Widegren, Thermophysical properties of polyol ester lubricants. NISTIR (2019). https://doi.org/10.6028/NIST.IR.8263
S.L. Outcalt, Energy Fuels 32, 3775 (2018). https://doi.org/10.1021/acs.energyfuels.8b00050
T.J. Fortin, J. Chem. Eng. Data 63, 4325 (2018). https://doi.org/10.1021/acs.jced.8b00358
L. Laesecke, C. Junker, D.S. Lauria, J. Res. Natl. Inst. Stan. 124, 124002 (2019). https://doi.org/10.6028/jres.124.002
K.N. Urness, R.V. Gough, J.A. Widegren, T.J. Bruno, Energy Fuels 30, 10161 (2016). https://doi.org/10.1021/acs.energyfuels.6b01863
MIL-PRF-23699, Performance specification. Lubricating oil, aircraft turbine engine, synthetic base, NATO code number O-156, (1997)
R.A. Perkins, H.M. Roder, C.A. Nieto de Castro, J. Res. Natl. Inst. Stand. Technol. 96, 247 (1991). https://doi.org/10.6028/jres.096.014
J.J. Healy, J.J. DeGroot, J. Kestin, Physica 82C, 392 (1976). https://doi.org/10.1016/0378-4363(76)90203-5
P.L. Woodfield, J. Fukai, M. Fujii, Y. Takata, K. Shinzato, Int. J. Thermophys. 29, 1278 (2008). https://doi.org/10.1007/s10765-008-0469-y
R. Hellmann, Chem. Phys. Letters 613, 133 (2014). https://doi.org/10.1016/j.cplett.2014.08.057
R. Hellmann, J. Chem. Phys. 146, 114304 (2017). https://doi.org/10.1063/1.4978412
R. Hellmann, J. Chem. Eng. Data 63, 470 (2018). https://doi.org/10.1021/acs.jced.7b01069
M.L. Huber, Models for the viscosity, thermal conductivity, and surface tension of selected pure fluids as implemented in REFPROP v10.0. NISTIR (2018). https://doi.org/10.6028/NIST.IR.8209
J.F. Ely, H.J.M. Hanley, Ind. Eng. Chem. Fundam. 22, 90 (1983). https://doi.org/10.1021/i100009a016
R.A. Perkins, M.L. Huber, M.J. Assael, J. Chem. Eng. Data 63, 2783 (2018). https://doi.org/10.1021/acs.jced.8b00132
R.A. Perkins, M.L. Huber, J. Chem. Eng. Data 56, 4868 (2011). https://doi.org/10.1021/je200811n
R.A. Perkins, M.L. Huber, M.J. Assael, J. Chem. Eng. Data 62, 2659 (2017). https://doi.org/10.1021/acs.jced.7b00106
S.A. Monogenidou, M.J. Assael, M.L. Huber, J. Phys. Chem. Ref. Data 47, 013103 (2018). https://doi.org/10.1063/1.5021459
S.A. Monogenidou, M.J. Assael, M.L. Huber, J. Phys. Chem. Ref. Data 47, 043101 (2018). https://doi.org/10.1063/1.5053087
G.A. Olchowy, J.V. Sengers, Phys. Rev. Lett. 61, 15 (1988). https://doi.org/10.1103/PhysRevLett.61.15
G.A. Olchowy, J.V. Sengers, Int. J. Thermophys. 10, 417 (1989). https://doi.org/10.1007/BF01133538
R. Krauss, V.C. Weiss, T.A. Edison, J.V. Sengers, K. Stephan, Int. J. Thermophys. 17, 731 (1996). https://doi.org/10.1007/BF01439187
R.A. Perkins, J.V. Sengers, I.M. Abdulagatov, M.L. Huber, Int. J. Thermophys. 34, 191 (2013). https://doi.org/10.1007/s10765-013-1409-z
P.T. Boggs, R.H. Byrd, J.E. Rogers, R.B. Schnabel, (ODRPACK, Software for Orthogonal Distance Regression, National Institute of Standards and Technology, Gaithersburg, MD USA, 1992)
Acknowledgments
The authors thank James McDonnell and Dawn Schmidt of the U.S. Naval Air Systems Command (NAVAIR) for partial funding for this work and providing the lubricant samples. Contribution of the National Institute of Standards and Technology, not subject to copyright in the USA. Commercial equipment, instruments, or materials are identified only to adequately specify certain procedures. Such identification does not imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the identified products are necessarily the best available for the purpose.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of Interest
The authors declare that they have no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Perkins, R.A., Huber, M.L. Measurements and Correlations of the Thermal Conductivity of Three Polyol Esters and a Polyol Ester-Based Lubricant. Int J Thermophys 41, 153 (2020). https://doi.org/10.1007/s10765-020-02729-1
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10765-020-02729-1