Skip to main content
Log in

Overview of Ionic Liquids as Candidates for New Heat Transfer Fluids

  • Nanoparticle-enhanced Ionic Liquids
  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

This review discusses, in terms of practical aspects and future application, about heat transfer fluids properties with special focus on the possible use of ionic liquids in heat transfer applications. Even if some data were identified in the open literature, most of the ionic liquids studies on thermophysical properties are yet at the beginning and fully described chemicals are scarce. The most relevant thermophysical properties of ionic liquids (density, specific heat, thermal conductivity, and viscosity) are paralleled with the properties of several commercial heat transfer fluids. A consistent attention is paid to the analysis of heat transfer coefficient and friction factor, as well as Prandtl number. Concluding, ionic liquids can be seen as an alternative to regular heat transfer oils, however, a consistent experimental approach using real-life geometries and conditions is mandatory to be developed to fully understand all the processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. https://www.pirobloc.com/en/hot-oil-heaters-and-thermal-fluids-guide/

  2. L. Qiu, N. Zhu, Y. Feng, E.E. Michaelides, G. Żyła, D.X. Zhang, P.M. Norris, C.N. Markides, O. Mahian, Phys. Rep. 843, 1–81 (2020)

    Article  ADS  Google Scholar 

  3. O. Mahian, L. Kolsi, M. Amani, P. Estellé, G. Ahmadi, C. Kleinstreuer, J.S. Marshall, M. Siavashi, R.A. Taylor, H. Niazmand, S. Wongwises, T. Hayat, A. Kolanjiyil, A. Kasaeia, I. Pop, Phys. Reports 790, 1–48 (2019)

    Article  MathSciNet  ADS  Google Scholar 

  4. K. Ghandi, Green Sustain Chem 4, 44–53 (2014)

    Article  Google Scholar 

  5. C. Li, Z. Zhao, X. Zhang, L. Tianyu Li, Int. J. Thermophys 39, 41 (2018)

    Article  ADS  Google Scholar 

  6. T.M. Koller, C. Steininger, M.H. Rausch, A.P. Fröb, Int. J. Thermophys. 38, 167 (2017)

    Article  ADS  Google Scholar 

  7. S. Gabriel, J. Weiner, Ber. Dtsch. Chem. Ges. 21, 2669–2679 (1888)

    Article  Google Scholar 

  8. T.L. Greaves, C.J. Drummond, Chem. Rev. 108, 206–237 (2007)

    Article  Google Scholar 

  9. E.A. Chernikova, L.M. Glukhov, V.G. Krasovskiy, L.M. Kustov, M.G. Vorobyeva, A.A. Koroteev, Russ. Chem. Rev. 84, 875–890 (2015)

    Article  ADS  Google Scholar 

  10. M.E. Van Valkenburg, R.L. Vaughn, M. Williams, J.S. Wilkes, Proc. Electrochem. Soc. 19, 112–123 (2002)

    Google Scholar 

  11. Q. Dong, C.D. Muzny, A. Kazakov, V. Diky, J.W. Magee, J.A. Widegren, R.D. Chirico, K.N. Marsh, M. Frenkel, J. Chem. Eng. Data 52, 1151–1159 (2007)

    Article  Google Scholar 

  12. S. Mathew, G. Visavale, V. Mali, Conference: International Conference on Applications of Renewable and Sustainable Energy for Industry and Society”, Hyderabad (REIS-2010) https://doi.org/10.13140/2.1.3247.4241

  13. Therminol 68. Technical Bulletin (Louvain-la-Neuve, Belgium: Solutia Europe, 2014)

  14. Shell Thermia Oil B Heat Transfer Fluid (Houston, TX: Shell Oil Company, 2005)

  15. Syltherm 800 Silicone Heat Transfer Fluid. Product Information (Midland, MI: Dow Chemical Company, 2001)

  16. Y.A. Sanmamed, D. Gonzalez-Salgado, J. Troncoso, L. Romani, A. Baylaucq, C. Boned, J. Chem. Thermodyn. 42, 553–563 (2010)

    Article  Google Scholar 

  17. S. Kakinuma, T. Ishida, H. Shirota, J. Phys. Chem. B 121, 250–264 (2017)

    Article  Google Scholar 

  18. V.V. Wadekar, Appl. Therm. Eng. 111, 1581–1587 (2017)

    Article  Google Scholar 

  19. F. Wang, L. Han, Z. Zhang, X. Fang, J. Shi, W. Ma, Nanoscale Res. Lett. 7, 314–319 (2012)

    Article  ADS  Google Scholar 

  20. E.I. Cherecheş, J.I. Prado, M. Cherecheş, A.A. Minea, L. Lugo, J. Mol. Liq. 291, 111332 (2019)

    Article  Google Scholar 

  21. T. C. Paul, Investigation of thermal performance of nanoparticle enhanced ionic liquids (NEILs) for solar collector applications. (Doctoral dissertation). (2014). Retrieved from http://scholarcommons.sc.edu/etd/2873

  22. J.M.P. França, S.I.C. Vieira, M.J.V. Lourenço, S.M.S. Murshed, C.A. Nieto de Castro, J. Chem. Eng. Data 58, 467–476 (2013)

    Article  Google Scholar 

  23. V. Patil, A. Cera-Manjarre, D. Salavera, C. Rode, K. Patil, C.A. Nieto de Castro, A. Coronas, J. Nanofluids 5, 191–208 (2016)

    Article  Google Scholar 

  24. C.P. Fredlake, J.M. Crosthwaite, D.G. Hert, S.N.V.K. Aki, J.F. Brennecke, J. Chem. Eng. Data 49, 954–964 (2004)

    Article  Google Scholar 

  25. O. Yamamuro, M. Kofu, I.O.P. Conf, Ser. Mater. Sci. Eng. 196, 012001 (2017)

    Google Scholar 

  26. A.P.C. Ribeiro, S.I.C. Vieira, P. Goodrich, C. Hardacre, M.J.V. Lourenço, C.A. NietodeCastro, J. Nanofluids 2, 55–62 (2013)

    Article  Google Scholar 

  27. Y.U. Paulechka, A.V. Blokhin, G.J. Kabo, Thermochim. Acta 604, 122–128 (2015)

    Article  Google Scholar 

  28. P. Wasserscheid, T. Welton, Ionic Liquids in Synthesis (Wiley, Weinheim, 2003)

    Google Scholar 

  29. G.L. Burrell, I.M. Burgar, F. Separovic, N.F. Dunlop, Phys. Chem. Chem. Phys. 12, 1571–1577 (2010)

    Article  Google Scholar 

  30. R. Ge, C. Hardacre, P. Nancarrow, D.W. Rooney, J. Chem. Eng. Data 52, 1819–1823 (2007)

    Article  Google Scholar 

  31. R.P. Singh, R.W. Winter, G.L. Gard, Y. Gao, J.M. Shreeve, Inorg. Chem. 42, 6142 (2003)

    Article  Google Scholar 

  32. M. Koel, Ionic liquids in chemical analysis (CRC Press, Boca Raton, 2008)

    Book  Google Scholar 

  33. N.G. Polikhronidi, R.G. Batyrova, I.M. Abdulagatov, J.W. Magee, J. Wu, Int. J. Thermophysics 37, 103 (2016)

    Article  ADS  Google Scholar 

  34. E.I. Chereches, A.A. Minea, K.V. Sharma, Int. J. Heat Mass Transf. 154, 119674 (2020)

    Article  Google Scholar 

  35. A.A. Minea, S.M.S. Murshed, Renew. Sustain. Energy Rev. 91, 584–599 (2018)

    Article  Google Scholar 

  36. S. Karellas, T.C. Roumpedakis, Solar thermal power plants in Solar Hydrogen Production (Academic Press, Cambridge, 2019), pp. 179–235

    Book  Google Scholar 

Download references

Funding

No funds were received.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alina Adriana Minea.

Ethics declarations

Conflict of interest

The author declares no conflict of interest.

Consent for publication

The main author consent on the article publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Special Issue on Nanoparticle-enhanced Ionic Liquids.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Minea, A.A. Overview of Ionic Liquids as Candidates for New Heat Transfer Fluids. Int J Thermophys 41, 151 (2020). https://doi.org/10.1007/s10765-020-02727-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-020-02727-3

Keywords

Navigation