Skip to main content

Advertisement

Log in

Pressure Dependence of Viscosity for Methyl Oleate and Methyl Linoleate up to 400 MPa

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

In this work, the conductance versus sweep frequency for AT-cut quartz crystal resonators was measured for methyl myristate, methyl oleate, and methyl linoleate under high pressure. The response of resonators immersed in methyl myristate at each temperature (313 K, 333 K, and 353 K) was obtained at pressures up to 140 MPa. The obtained values were nearly similar for both the fundamental mode and third overtone, and the obtained viscosities agreed with the literature data up to 100 MPa. For methyl oleate and methyl linoleate, the pressure dependence of the viscosity at various temperatures (293 K, 313 K, 333 K, and 353 K) was obtained up to 400 MPa. The viscosity increased exponentially in the low-pressure region with increasing pressure, but the rate of increase slowed above ~ 150 MPa and the viscosity deviated from an exponential increase. Fitting was performed using a Tait-type equation, and the deviation from the fitted value was calculated using this fitting equation. The pressure dependence of the viscosity could be obtained within 10 % of absolute average deviation (AAD) with a sample volume of ~ 2 mL using simple experimental equipment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. H. Yamawaki, Int. J. Thermophys. 38, 64 (2017). https://doi.org/10.1007/s10765-017-2198-6

    Article  ADS  Google Scholar 

  2. H. Yamawaki, Int. J. Thermophys. 39, 98 (2018). https://doi.org/10.1007/s10765-018-2419-7

    Article  ADS  Google Scholar 

  3. H. Yamawaki, J. Appl. Phys. 127, 094701 (2020). https://doi.org/10.1063/1.5143161

    Article  ADS  Google Scholar 

  4. M. Cassiède, J.-L. Daridon, J.H. Paillol, J. Pauly, J. Appl. Phys. 108, 034505 (2010). https://doi.org/10.1063/1.3460805

    Article  ADS  Google Scholar 

  5. M. Cassiède, J.-L. Daridon, J.H. Paillol, J. Pauly, J. Appl. Phys. 109, 074501 (2011). https://doi.org/10.1063/1.3562176

    Article  ADS  Google Scholar 

  6. J.-L. Daridon, M. Cassiède, J.H. Paillol, J. Pauly, Rev. Sci. Instrum. 82, 095114 (2011). https://doi.org/10.1063/1.3638465

    Article  ADS  Google Scholar 

  7. M. Habrioux, J.-P. Bazile, G. Galliero, J.L. Daridon, J. Chem. Eng. Data 60, 902 (2015). https://doi.org/10.1021/je500980a

    Article  Google Scholar 

  8. M. Habrioux, D. Nasri, J.L. Daridon, J. Chem. Thermodyn. 120, 1 (2018). https://doi.org/10.1016/j.jct.2017.12.020

    Article  Google Scholar 

  9. M. Habrioux, J.-P. Bazile, G. Galliero, J. Luc Daridon, J. Chem. Eng. Data 61, 398 (2016). https://doi.org/10.1021/acs.jced.5b00612

    Article  Google Scholar 

  10. H. Fujiwara, H. Kadomatsu, K. Tohma, Rev. Sci. Instrum. 51, 1345 (1980). https://doi.org/10.1063/1.1136061

    Article  ADS  Google Scholar 

  11. K.K. Kanazawa, J.G. GordonII, Anal. Chim. Acta 175, 99–105 (1985). https://doi.org/10.1016/S0003-2670(00)82721-X

    Article  Google Scholar 

  12. E.H.I. Ndiaye, M. Habrioux, J.A.P. Coutinho, M.L.L. Paredes, J.L. Daridon, J. Chem. Eng. Data 58, 1371–1377 (2013). https://doi.org/10.1021/je400122k

    Article  Google Scholar 

  13. E.H.I. Ndiaye, M. Habrioux, J.A.P. Coutinho, M.L.L. Paredes, J.L. Daridon, J. Chem. Eng. Data 58, 2345–2354 (2013). https://doi.org/10.1021/je4005323

    Article  Google Scholar 

  14. D.R. Caudwell, J.P.M. Trusler, V. Vesovic, W.A. Wakeham, Int. J. Thermophys. 25, 1339 (2004). https://doi.org/10.1007/s10765-004-5742-0

    Article  ADS  Google Scholar 

  15. M.J. Pratas, S. Freitas, M.B. Oliveira, S.C. Monteiro, A.S. Lima, J.A.P. Coutinho, J. Chem. Eng. Data 55, 3983 (2010). https://doi.org/10.1021/je100042c

    Article  Google Scholar 

  16. K.R. Harris, J. Chem. Eng. Data 54, 2729–2738 (2009). https://doi.org/10.1021/je900284z

    Article  Google Scholar 

  17. H.E. King Jr., E. Herbolzheimer, R.L. Cook, J. Appl. Phys. 71, 2071 (1992). https://doi.org/10.1063/1.351157

    Article  ADS  Google Scholar 

  18. B.A. Bamgbade, Y. Wu, H.O. Baled, R.M. Enick, W.A. Burgess, D. Tapriyal, M.A. McHugh, J. Chem. Thermodyn. 63, 102 (2013). https://doi.org/10.1016/j.jct.2013.04.010

    Article  Google Scholar 

  19. I. K. Gamwo, D. Tapriyal, R. M. Enick, M. A. McHugh, B. D. Morreale, High Temperature, High Pressure Equation of State: Solidification of Hydrocarbons and Measurement of Krytox Oil Using Rolling-Ball Viscometer Validation. NETL-TRS-5-2014, EPAct Technical Report Series (U.S. Department of Energy, National Energy Technology Laboratory, Morgantown, WV, 2014), p. 48. https://doi.org/10.18141/1432512

Download references

Acknowledgments

We thank Arun Paraecattil, Ph.D., from Edanz Group (http://www.edanzediting.com/ac) for editing a draft of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Yamawaki.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 4098 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamawaki, H. Pressure Dependence of Viscosity for Methyl Oleate and Methyl Linoleate up to 400 MPa. Int J Thermophys 41, 112 (2020). https://doi.org/10.1007/s10765-020-02693-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-020-02693-w

Keywords

Navigation