Skip to main content

Advertisement

Log in

Measurement and Correlation of the Thermal Conductivity of cis-1,1,1,4,4,4-hexafluoro-2-butene

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

New experimental data for the thermal conductivity of cis-1,1,1,4,4,4-hexafluoro-2-butene (R-1336mzz(Z)) are reported for vapor, liquid, and supercritical states. These data were obtained with transient hot-wire apparatus over the temperature range from 192 K to 498 K and at pressures from 0.05 MPa to 69 MPa. These data were used to develop a wide-range correlation for the thermal conductivity of the vapor, liquid, and supercritical fluid. The experimental data reported here have an uncertainty of 1 % for the liquid and supercritical regions (densities above 600 kg·m−3), 1.5 % for vapor and supercritical regions (pressures greater than or equal to 1 MPa and densities less than 200 kg·m−3), 3 % for supercritical states (densities between 200 kg·m−3 and 600 kg·m−3), and 3 % for vapor and supercritical states (pressures below 1 MPa). The thermal-conductivity correlation developed in this work is estimated to have an expanded relative uncertainty, at a 95 % confidence level, ranging from approximately 1.4 % to 4.2 % depending on the temperature and pressure, with larger uncertainties in the critical region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A. Mota-Babiloni, C. Mateu-Royo, J. Navarro-Esbri, F. Moles, M. Amat-Albuixech, A. Barragan-Cervera, Energy 165, 1248 (2018). https://doi.org/10.1016/j.energy.2018.09.188

    Article  Google Scholar 

  2. C. Mateu-Ryo, J. Navarro-Esbri, A. Mota-Babiloni, M. Amat-Albuixech, F. Moles, Int. J. Refrig 90, 229 (2018). https://doi.org/10.1016/j.ijrefrig.2018.04.017

    Article  Google Scholar 

  3. R. Scaccabarozzi, M. Tavano, C.M. Invernizzi, E. Martelli, Energy 158, 396 (2018). https://doi.org/10.1016/j.energy.2018.06.017

    Article  Google Scholar 

  4. J. Navarro-Esbri, F. Moles, B. Peris, A. Mota-Babiloni, K. Kontomaris, Energy 133, 79 (2017). https://doi.org/10.1016/j.energy.2017.05.092

    Article  Google Scholar 

  5. K. Kontomaris, In International Refrigeration and Air Conditioning Conference at Purdue, (2014)

  6. Toxicol. Ind. Health 35(3), 180 (2019) doi: 10.1177/0748233719825530

  7. M.O. McLinden, R. Akasaka, J. Chem. Eng. Data, (2020) [in press]

  8. E.W. Lemmon, I.H. Bell, M.L. Huber, M.O. McLinden, NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 10.0 (National Institute of Standards and Technology, Gaithersburg, MD, 2018)

  9. A. Miyara, M.J. Alam, K. Kariya, Int. J. Refrig 92, 86 (2018). https://doi.org/10.1016/j.ijrefrig.2018.05.021

    Article  Google Scholar 

  10. M.J. Alam, A. Miyara, K. Kariya, K.K. Kontomaris, J. Chem. Eng. Data 63(5), 1706 (2018). https://doi.org/10.1021/acs.jced.8b00036

    Article  Google Scholar 

  11. Y.K. Sun, X.J. Li, X.Y. Meng, J.T. Wu, J. Chem. Eng. Data 64(2), 395 (2019). https://doi.org/10.1021/acs.jced.8b00713

    Article  Google Scholar 

  12. M.J. Alam, M.A. Islam, K. Kariya, A. Miyara, Int. J. Refrig 84, 220 (2017). https://doi.org/10.1016/j.ijrefrig.2017.08.014

    Article  Google Scholar 

  13. M.L. Huber, (National Institute of Standards and Technology, 2018)

  14. H.M. Roder, J. Res. Natl. Bur. Stand. 86, 457 (1981)

    Article  Google Scholar 

  15. P.L. Woodfield, J. Fukai, M. Fujii, Y. Takata, K. Shinzato, Int. J. Thermophys. 29, 1278 (2008)

    Article  ADS  Google Scholar 

  16. J.J. Healy, J.J. DeGroot, J. Kestin, Physica 82C, 392 (1976)

    Google Scholar 

  17. M.J. Assael, L. Karagiannidis, S.M. Richardson, W.A. Wakeham, Int. J. Thermophys. 13, 223 (1992)

    Article  ADS  Google Scholar 

  18. B. Taxis, K. Stephan, Int. J. Thermophys. 15, 141 (1994)

    Article  ADS  Google Scholar 

  19. S.F.Y. Li, M. Papadaki, W.A. Wakeham, High Temp. High Press. 25, 451 (1993)

    Google Scholar 

  20. S.F.Y. Li, M. Papadaki, W.A. Wakeham, in Thermal Conductivity 22, ed. by T.W. Tong (Technomic Publishing, Lancaster, 1994), pp. 531–542

    Google Scholar 

  21. H.M. Roder, R.A. Perkins, A. Laesecke, C.A. Nieto de Castro, J. Res. Natl. Inst. Stand. Technol. 105, 221 (2000)

    Article  Google Scholar 

  22. R.A. Perkins, M.L. Huber, M.J. Assael, J. Chem. Eng. Data 63, 2783 (2018)

    Article  Google Scholar 

  23. R.A. Perkins, M.L. Huber, J. Chem. Eng. Data 56, 4868 (2011). https://doi.org/10.1021/je200811n

    Article  Google Scholar 

  24. R.A. Perkins, M.L. Huber, M.J. Assael, J. Chem. Eng. Data 62(9), 2659 (2017). https://doi.org/10.1021/acs.jced.7b00106

    Article  Google Scholar 

  25. G.A. Olchowy, J.V. Sengers, Phys. Rev. Lett. 61, 15 (1988)

    Article  ADS  Google Scholar 

  26. G.A. Olchowy, J.V. Sengers, Int. J. Thermophys. 10, 417 (1989)

    Article  ADS  Google Scholar 

  27. R. Krauss, V.C. Weiss, T.A. Edison, J.V. Sengers, K. Stephan, Int. J. Thermophys. 17, 731 (1996)

    Article  ADS  Google Scholar 

  28. R.A. Perkins, J.V. Sengers, I.M. Abdulagatov, M.L. Huber, Int. J. Thermophys. 34, 191 (2013). https://doi.org/10.1007/s10765-013-1409-z

    Article  ADS  Google Scholar 

  29. P.T. Boggs, Byrd, R.H., Rogers, J.E., Schnabel, R.B., (National Institute of Standards and Technology, Gaithersburg, MD USA, 1992)

Download references

Acknowledgements

We thank Konstantin Kontomaris of Chemours for the sample of R-1336mzz(Z) studied here. We thank Mark McLinden of NIST for sample preparation that included the freeze–thaw degassing of the sample, and Tara Lovestead of NIST for characterization of the sample purity.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard A. Perkins.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Contribution of the National Institute of Standards and Technology, not subject to copyright in the United States.

Commercial equipment, instruments, or materials are identified only to adequately specify certain procedures. Such identification does not imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the identified products are necessarily the best available for the purpose.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 307 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perkins, R.A., Huber, M.L. Measurement and Correlation of the Thermal Conductivity of cis-1,1,1,4,4,4-hexafluoro-2-butene. Int J Thermophys 41, 103 (2020). https://doi.org/10.1007/s10765-020-02681-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-020-02681-0

Keywords

Navigation