Skip to main content
Log in

Deviation of Temperature Determined by ITS-90 Temperature Scale from Thermodynamic Temperature Measured by Acoustic Gas Thermometry at 79.0000 K and at 83.8058 K

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

A difference was determined between temperature defined by International Temperature Scale (ITS-90) and thermodynamic temperature measured by relative acoustic gas thermometry at 79.0000 K and at 83.8058 K. Measurement were carried out using misaligned spherical acoustic resonator filled with helium at different pressures. The isotherms were fitted for four different acoustic modes simultaneously assuming the same thermal accommodation coefficient and third acoustic virial coefficient for all modes. Our measurements yield the following differences between the thermodynamic temperature T and ITS-90 temperature \(T_{90}\): \(T-T_{90}=-4.81 \pm 1.02\) mK at 83.9058 K and \(T-T_{90}=-4.47 \pm 0.97\) mK at 79.0000 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Resolutions of 26th CGPM, Versailles, France (2018)

  2. R.M. Gavioso, D. Madonna Ripa, P.P.M. Steur, R. Dematteis, D. Imbraguglio, Metrologia 56, 045006 (2019)

    Article  ADS  Google Scholar 

  3. C. Gaiser, B. Fellmuth, N. Haft, Metrologia 54, 141 (2017)

    Article  ADS  Google Scholar 

  4. R. Underwood, M. de Podesta, G. Sutton, L. Stanger, R. Rusby, P. Harris, P. Morantz, G. Machin, Int. J. Thermophys. 38, 44 (2017)

    Article  ADS  Google Scholar 

  5. R. Underwood, M. de Podesta, G. Sutton, L. Stanger, R. Rusby, P. Harris, P. Morantz, G. Machin, Phil. Trans. R. Soc. A 374, 20150048 (2016)

    Article  ADS  Google Scholar 

  6. D.C. Ripple, G.F. Strouse, M.R. Moldover, Int. J. Thermophys. 28, 1789 (2007)

    Article  ADS  Google Scholar 

  7. G.F. Strouse, D.R. Defibaugh, M.R. Moldover, D.C. Ripple, AIP Conf. Proc. 684, 31 (2003)

    Article  ADS  Google Scholar 

  8. M.R. Moldover, S.J. Boyes, C.W. Meyer, A.R.H. Goodwin, J. Res. Natl. Inst. Stand. Technol. 104, 11 (1999)

    Article  Google Scholar 

  9. J. Fischer, M. de Podesta, K.D. Hill, M. Moldover, L. Pitre, R. Rusby, P. Steur, O. Tamura, R. White, L. Wolber, Int. J. Thermophys. 32, 12 (2011)

    Article  ADS  Google Scholar 

  10. G. Benedetto, R.M. Gavioso, R. Spagnolo, P. Marcarono, A. Merlone, Metrologia 41, 74–92 (2004)

    Article  ADS  Google Scholar 

  11. L. Pitre, M.R. Moldover, W.L. Tew, Metrologia 43, 142 (2006)

    Article  ADS  Google Scholar 

  12. C. Gaiser, B. Fellmuth, N. Haft, Int. J. Thermophys. 29, 18 (2008)

    Article  ADS  Google Scholar 

  13. M.R. Moldover, R.M. Gavioso, J.B. Mehl, L. Pitre, M. de Podesta, J.T. Zhang, Metrologia 51, R1 (2014)

    Article  Google Scholar 

  14. C. Gaiser, T. Zandt, B. Fellmuth, Metrologia 52, S217 (2015)

    Article  ADS  Google Scholar 

  15. P.M.C. Rourke, Int. J. Thermophys. 38, 107 (2017)

    Article  ADS  Google Scholar 

  16. D.R. White, R. Galleano, A. Actis, H. Brixy, M. De Groot, J. Dubbeldam, A.L. Reesink, F. Edler, H. Sakurai, R.L. Shepard, Metrologia 33, 325 (1996)

    Article  ADS  Google Scholar 

  17. R.M. Gavioso, D. Madonna Ripa, P.P.M. Steur, C. Gaiser, D. Truong, C. Guianvarc’h, P. Tarizzo, F.M. Stuart, R. Dematteis, Metrologia 52, S274 (2015)

    Article  ADS  Google Scholar 

  18. M. de Podesta, R. Underwood, G. Sutton, P. Morantz, P. Harris, D.F. Mark, F.M. Stuart, G. Vargha, G. Machin, Metrologia 50, 354 (2013)

    Article  ADS  Google Scholar 

  19. L. Pitre, L. Risegari, F. Sparasci, M.D. Plimmer, M.E. Himbert, P.A. Giuliano Albo, Metrologia 52, S263 (2015)

    Article  ADS  Google Scholar 

  20. L. Pitre, F. Sparasci, L. Risegari, C. Guianvarc’h, C. Martin, M.E. Himbert, M.D. Plimmer, A. Allard, B. Marty, P.A. GiulianoAlbo, Metrologia 54, 856 (2017)

    Article  ADS  Google Scholar 

  21. V.G. Kytin, G.A. Kytin, Meas. Tech. 59, 62 (2016)

    Article  Google Scholar 

  22. H. Preston-Thomas, Metrologia 27, 3 (1990)

    Article  ADS  Google Scholar 

  23. K.D. Hill, A.G. Steele, Y.A. Dedikov, V.T. Shkraba, Metrologia 42, 03001 (2005)

    Article  ADS  Google Scholar 

  24. B. Mehl, M.R. Moldover, Phys. Rev. A 34, 3341 (1986)

    Article  ADS  Google Scholar 

  25. J.B. Mehl, Metrologia 46, 554 (2009)

    Article  ADS  Google Scholar 

  26. J.B. Mehl, C. R. Physique 10, 859 (2009)

    Article  ADS  Google Scholar 

  27. ISO/IEC GUIDE 98-3:2008(E) Published in Switzerland (2008)

Download references

Acknowledgements

Authors are grateful to A.S. Doinikov for fruitful discussions and important remarks concerning uncertainty budget and presentation of results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Kytin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Calculation of Type A Uncertainties of T Measurements

Appendix: Calculation of Type A Uncertainties of T Measurements

Contributions to type A uncertainty of T measurement due to noise of microwave and acoustic signal were calculated based on the T determination procedure. The following expressions were used:

$$\begin{aligned} u_{Afm}(T)= & {} \sqrt{\frac{T^2}{f_{m0}(T)^4} u_{Af}(f_{m0}(T)^2)^2 + \frac{T^2}{f_{m0}(T_W)^4} u_{Af}(f_{m0}(T_W)^2)^2} \end{aligned}$$
(53)
$$\begin{aligned} u_{Af}(f_{m0})= & {} \sqrt{\frac{1}{3} \frac{\sum \limits _{j=1}^3 (f_{mi} + g_{mj})^2 (u_A (f_{mj})^2 + u_A (g_{mj})^2)}{\sum \limits _{j=1}^3 (f_{mj} + g_{mj})^2}} \end{aligned}$$
(54)
$$\begin{aligned} u_{Af}(f_{mj})= & {} \sqrt{ u_A (Re S_{21})^2 \sum \limits _{j=1}^{N_m} \left( \frac{\partial f_{mj}}{\partial Re S_{21j}} \right) ^2 + u_A (Im S_{21})^2 \sum \limits _{j=1}^{N_m} \left( \frac{\partial f_{mj}}{\partial Im S_{21j}} \right) ^2} \end{aligned}$$
(55)
$$\begin{aligned} u_{Af}(g_{mj})= & {} \sqrt{ u_A (Re S_{21})^2 \sum \limits _{j=1}^{N_m} \left( \frac{\partial g_{mj}}{\partial Re S_{21j}} \right) ^2 + u_A (Im S_{21})^2 \sum \limits _{j=1}^{N_m} \left( \frac{\partial g_{mj}}{\partial Im S_{21j}} \right) ^2} \end{aligned}$$
(56)

where \(N_m =400\) is the amount of points in the frequency dependence of microwave transmission coefficient.

$$\begin{aligned} u_{Afa0l}(T)= & {} \sqrt{\frac{T^2}{f_{a0l}(T)^4} u_{Af}(f_{a0l}(T)^2)^2 + \frac{T^2}{f_{a0l}(T_W)^4} u_{Af}(f_{a0l}(T_W)^2)^2} \end{aligned}$$
(57)
$$\begin{aligned} u_{Af}(f_{a0l}^2)= & {} \sqrt{\sum \limits _{k=1}^4 \sum \limits _{j=1}^{N_{ap}} \left( \frac{\partial f_{a0l}^2}{\partial a_{0k}} \frac{\partial a_{0k}}{\partial \varphi _{kj}} \right) ^2 u_{Af} (\varphi _{kj})^2 } \end{aligned}$$
(58)
$$\begin{aligned} u_{Af}(\varphi _{kj}^2)= & {} \left| \frac{\partial \varphi _{kj}}{\partial f_{akj}} \right| u_A (f_{akj}^2) \end{aligned}$$
(59)
$$\begin{aligned} u_{Af}(f_{akj})= & {} \sqrt{ u_A (Re U)^2 \sum \limits _{j=1}^{N_a} \left( \frac{\partial f_{akj}}{\partial Re U_j} \right) ^2 + u_A (Im U)^2 \sum \limits _{j=1}^{N_a} \left( \frac{\partial f_{akj}}{\partial Im U_j} \right) ^2} \end{aligned}$$
(60)

where \(N_a\) = 30 is the amount of point in the frequency dependence of acoustic signal. Derivatives of resonance frequencies were calculated using following expressions:

$$\begin{aligned}&\frac{\partial f_{m(ak)j}}{\partial Re (Im) S_{21} (U)_j} = Re (- Im) \frac{\partial F_{m(ak)j}}{\partial S_{21} (U)_j} \end{aligned},$$
(61)
$$\begin{aligned}&\frac{\partial g_{m(ak)j}}{\partial Re (Im) S_{21} (U)_j} = Im (Re) \frac{\partial F_{m(ak)j}}{\partial S_{21} (U)_j} \end{aligned}.$$
(62)

Fitting procedure minimizes sum of squared deviations Q of experimental points from fitting function \(G(P, x_j)\). Thus, derivatives of Q over fitting parameters \(p_k\) are equal to zero for best values of fitting parameters. Therefore,

$$\begin{aligned}&\frac{\partial p_k}{\partial y_i} = \sum \limits _{l=1}^{N_p} || W ||_{kl}^{-1} \frac{\partial ^2 Q}{\partial p_l \partial y_i} \end{aligned}$$
(63)
$$\begin{aligned}&\frac{\partial p_k}{\partial x_i} = \sum \limits _{l=1}^{N_p} || W ||_{kl}^{-1} \frac{\partial ^2 Q}{\partial p_l \partial x_i} \end{aligned}$$
(64)
$$\begin{aligned}&W_{kl} = \frac{\partial ^2 Q}{\partial p_k \partial p_l} \end{aligned}$$
(65)
$$\begin{aligned}&Q = \sum \limits _{j=1}^N |y_j - G(P,x_j)|^2 d_j \end{aligned}$$
(66)

where \(P=(p_1, p_2,\ldots , p_{N_p})\) is the array of fitting parameters, \(d_j\) the weight, and N the amount of point in fitting dependence.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kytin, V.G., Kytin, G.A., Ghavalyan, M.Y. et al. Deviation of Temperature Determined by ITS-90 Temperature Scale from Thermodynamic Temperature Measured by Acoustic Gas Thermometry at 79.0000 K and at 83.8058 K. Int J Thermophys 41, 88 (2020). https://doi.org/10.1007/s10765-020-02663-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-020-02663-2

Keywords

Navigation