Skip to main content
Log in

Molecular Dynamics Study of Water Diffusivity in Graphene Nanochannels

  • ATPC 2019
  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Transport properties of nano-confined fluids such as diffusivity can exhibit utterly distinctive characteristics compared to the transport properties in the bulk due to the interactions between atoms in the solid walls and fluid atoms as well as the confinements. In this paper, the diffusivity of water confined in the graphene nanochannels is calculated by molecular dynamics simulations through the Einstein equation, and the results show that the diffusivity of nano-confined water is obviously anisotropic, i.e., the perpendicular (vertical to the graphene walls) diffusivity is obviously lower than the diffusivity in the parallel plane. By studying the Lagrangian dynamics of molecules in the confined region, we realize that the anisotropy can be attributed to the trapping of water molecules in the potential wells near the graphene walls, resulting in the inhibition of the molecular mobility in the perpendicular direction. Meanwhile, the proportion of confined water molecules decreases with increasing channel height and the contributions of the trapped water molecules on the inhibited mobility in the perpendicular direction are weakened. As a result, the diffusivity in all directions approaches the bulk values at high channel heights. The obtained results are helpful in revealing the mechanisms of water diffusion in nanospaces from the molecular level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. B. Corry, Energy. Environ. Sci. 4, 751 (2011). https://doi.org/10.1039/C0EE00481B

    Article  Google Scholar 

  2. B. Corry, J. Phys. Chem. B 112, 1427 (2008). https://doi.org/10.1021/jp709845u

    Article  Google Scholar 

  3. J. Kou, X. Zhou, H. Lu, F. Wu, J. Fan, Nanoscale 6, 1865 (2014). https://doi.org/10.1039/C3NR04984A

    Article  ADS  Google Scholar 

  4. Z.S. Siwy, M. Davenport, Nat. Nanotechnol. 5, 697 (2010). https://doi.org/10.1038/nnano.2010.198

    Article  ADS  Google Scholar 

  5. C. Sun, S. Zhu, M. Liu, S. Shen, B. Bai, J. Phy. Chem. Lett 10, 7188 (2019). https://doi.org/10.1021/acs.jpclett.9b02715

    Article  Google Scholar 

  6. F. Sofos, T. Karakasidis, A. Liakopoulos, Int. J. Heat. Mass. Transf. 52, 735 (2009). https://doi.org/10.1016/j.ijheatmasstransfer.2008.07.022

    Article  Google Scholar 

  7. Y. Liu, Q. Wang, T. Wu, L. Zhang, J. Chem. Phys. 123, 234701 (2005). https://doi.org/10.1063/1.2131070

    Article  ADS  Google Scholar 

  8. C. Sun, B. Wen, B. Bai, Chem. Eng. Sci. 138, 616 (2015). https://doi.org/10.1016/j.ces.2015.08.049

    Article  Google Scholar 

  9. D. Cohen-Tanugi, J.C. Grossman, Nano Lett. 12, 3602 (2012). https://doi.org/10.1021/nl3012853

    Article  ADS  Google Scholar 

  10. E.N. Wang, R. Karnik, Nat. Nanotechnol. 7, 552 (2012). https://doi.org/10.1038/nnano.2012.153

    Article  ADS  Google Scholar 

  11. C. Sun, M.S.H. Boutilier, H. Au, P. Poesio, B. Bai, R. Karnik, N.G. Hadjiconstantinou, Langmuir 30, 675 (2014). https://doi.org/10.1021/la403969g

    Article  Google Scholar 

  12. H. Du, J. Li, J. Zhang, G. Su, X. Li, Y. Zhao, J. Phys. Chem. C 115, 23261 (2011). https://doi.org/10.1021/jp206258u

    Article  Google Scholar 

  13. C. Sun, M. Liu, B. Bai, Carbon 153, 481 (2019). https://doi.org/10.1016/j.carbon.2019.07.052

    Article  Google Scholar 

  14. A.P. Straub, N.Y. Yip, S. Lin, J. Lee, M. Elimelech, Nat Energy 1, 16090 (2016). https://doi.org/10.1038/nenergy.2016.90

    Article  ADS  Google Scholar 

  15. A.N. Omrani, E. Esmaeilzadeh, M. Jafari, A. Behzadmehr, Diam. Relat. Mater. 93, 96 (2019). https://doi.org/10.1016/j.diamond.2019.02.002

    Article  ADS  Google Scholar 

  16. E. Oyarzua, J.H. Walther, A. Mejía, H.A. Zambrano, Phys. Chem. Chem. Phys 17, 14731 (2015). https://doi.org/10.1039/C5CP01862E

    Article  Google Scholar 

  17. Y. Li, M.A. Alibakhshi, Y. Zhao, C. Duan, Nano Lett. 17, 4813 (2017). https://doi.org/10.1021/acs.nanolett.7b01620

    Article  ADS  Google Scholar 

  18. C.Z. Sun, W.Q. Lu, B.F. Bai, J. Liu, Int. J. Heat Mass. Transf. 55, 1732 (2012). https://doi.org/10.1016/j.ijheatmasstransfer.2011.11.028

    Article  Google Scholar 

  19. C.Z. Sun, W.Q. Lu, B.F. Bai, J. Liu, Appl. Therm. Eng. 31, 3799 (2011). https://doi.org/10.1016/j.applthermaleng.2011.07.021

    Article  Google Scholar 

  20. D. Bertolini, A. Tani, Phys. Rev. E 56, 4135 (1997)

    Article  ADS  Google Scholar 

  21. T.W. Sirk, S. Moore, E.F. Brown, J. Chem. Phys. 138, 064505 (2013). https://doi.org/10.1063/1.4789961

    Article  ADS  Google Scholar 

  22. Y. Mao, Y. Zhang, Chem. Phys. Lett. 542, 37 (2012). https://doi.org/10.1016/j.cplett.2012.05.044

    Article  ADS  Google Scholar 

  23. F. Jaeger, O.K. Matar, E.A. Müller, arXiv, 1901.06865v1 (2019)

  24. Z. Zhao, C. Sun, R. Zhou, Int. J. Heat. Mass. Transf. 152, 119502 (2020). https://doi.org/10.1016/j.ijheatmasstransfer.2020.119502

    Article  Google Scholar 

  25. S. Plimpton, J. Comput. Phys. 117, 1 (1995). https://doi.org/10.1006/jcph.1995.1039

    Article  ADS  Google Scholar 

  26. H.J.C. Berendsen, J.R. Grigera, T.P. Straatsma, J. Phys. Chem 91, 6269 (1987). https://doi.org/10.1021/j100308a038

    Article  Google Scholar 

  27. D. van der Spoel, P.J. van Maaren, H.J.C. Berendsen, J. Chem. Phys. 108, 10220 (1998). https://doi.org/10.1063/1.476482

    Article  Google Scholar 

  28. J.-P. Ryckaert, G. Ciccotti, H.J.C. Berendsen, J. Comput. Phys. 23, 327 (1977). https://doi.org/10.1016/0021-9991(77)90098-5

    Article  ADS  Google Scholar 

  29. M. Zhao, X. Yang, X. Yang, Acta Phys. -Chim. Sin. 31, 1489 (2015). https://doi.org/10.3866/pku.whxb201506011

    Article  Google Scholar 

  30. R.J. Mashl, S. Joseph, N.R. Aluru, E. Jakobsson, Nano Lett. 3, 589 (2003). https://doi.org/10.1021/nl0340226

    Article  ADS  Google Scholar 

  31. M. Moulod, G. Hwang, J. Appl. Phys. 120, 194302 (2016). https://doi.org/10.1063/1.4967797

    Article  ADS  Google Scholar 

  32. T.T. Trinh, D. Bedeaux, J.M. Simon, S. Kjelstrup, Chem. Phys. Lett. 612, 214 (2014). https://doi.org/10.1016/j.cplett.2014.08.026

    Article  ADS  Google Scholar 

  33. G.J. Wang, N.G. Hadjiconstantinou, Langmuir 34, 6976 (2018). https://doi.org/10.1021/acs.langmuir.8b01540

    Article  Google Scholar 

  34. G. Zuo, R. Shen, S. Ma, W. Guo, ACS Nano 4, 205 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge the financial supports from National Natural Science Foundation of China for general project No. 51876169, Scientific Research Foundation of Xi’an Polytechnic University No. BS201931 and General Open Project of Key Laboratory of Thermal Power Technology (China) No. TPL2017BB009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengzhen Sun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Selected Papers of the 12th Asian Thermophysical Properties Conference.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Z., Zhou, R. & Sun, C. Molecular Dynamics Study of Water Diffusivity in Graphene Nanochannels. Int J Thermophys 41, 79 (2020). https://doi.org/10.1007/s10765-020-02660-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-020-02660-5

Keywords

Navigation