Skip to main content
Log in

New Methodology for Measuring the Thermal Conductivity of Small Samples Using the Boxes Method with Reduced Sensors

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The reduction of device components is of a major interest for the conception of low-cost devices with a simple design. Generally, the boxes method measures the effective thermal conductivity of relatively large-sized samples due to its industrial purposes. However, to determine the thermal conductivity of small samples, additional sensors are required. In this work, a new experimental procedure is developed to characterize the thermal conductivity of small samples without any additional sensor. A detailed uncertainty analysis in the thermal conductivity measurements is conducted. The improvement of the instrument uncertainty was also considered. Three different scenarios were examined, from ideal to worst-case, in order to assess the performance of the proposed methodology. The values of the measured thermal conductivity were compared with those obtained by a reference method (hot disk). The comparison shows a good agreement and proves the effectiveness of the used technique. The overall study of the propagation of measurement uncertainties shows that the instrument’s uncertainty was found to be less than 6.1 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

C:

Thermal loss coefficient through the box (W·m−2·K−1)

es :

Thickness of the small sample (m)

eXPS :

Thickness of the insulating frame (m)

Pi :

ith permutation [one]

R:

Resistance of the heater element (Ω)

Ss :

Surface of the small sample (m2)

SXPS :

Surface of the insulating frame (m2)

Tbox_upper :

Temperature of the box (°C)

Tbox_lower :

Temperature of the isothermal capacity (°C)

Tlower :

Temperature of the lower face (°C)

Troom :

Temperature of the room (°C)

Tupper :

Temperature of the higher face (°C)

U:

Voltage (V)

Uxi :

Relative uncertainty in the xi variable (%)

UMFxi :

Uncertainty magnification factor of the xi variable

ΔTloss :

Box/room temperature difference (°C)

ΔTs :

Higher/lower temperature difference of the small sample (°C)

ΔTXPS :

Higher/lower temperature difference of the insulating frame (°C)

\(\delta_{xi}\) :

Absolute uncertainty in the xi variable

\(\uplambda\) :

Thermal conductivity (W·m−1·K−1)

\(\emptyset_{loss}\) :

Heat loss through the box (W)

\(\emptyset_{in}\) :

Heat flow produced by the heating element (W)

\(\emptyset_{sample}\) :

Heat flow through the small sample (W)

\(\emptyset_{XPS}\) :

Heat flow through the insulating frame (W)

EI702:

Boxes method cell

DRE:

Data reduction equation

References

  1. J.C. Maréchal, Mater. Constr. 7, 61 (1994). https://doi.org/10.1007/BF024826

    Article  Google Scholar 

  2. S.O.G. Osséni, C. Ahouannou, E.A. Sanya, Y. Jannot, Int. J. Thermophys. 38, 81 (2017). https://doi.org/10.1007/s10765-017-2217-7

    Article  ADS  Google Scholar 

  3. X. Guo, T. Zhang, J. Clean. Prod. 252, 119759 (2020). https://doi.org/10.1016/j.jclepro.2019.119759

    Article  Google Scholar 

  4. R. Alyousef, O. Benjeddou, C. Soussi, Adv. Mater. Sci. Eng. 2019, 14 (2019). https://doi.org/10.1155/2019/8160461

    Article  Google Scholar 

  5. R. Coquard, E. Coment, G. Flasquin, D. Baillis, Int. J. Therm. Sci. 65, 242 (2013). https://doi.org/10.1016/j.ijthermalsci.2012.10.008

    Article  Google Scholar 

  6. H. Ezbakhe, S. Boussaid, A.E. Bakkouri, T. Ajzoul, A.E. Bouardi, in World Renewable Energy Congress VI, ed. by A.A.M. Sayigh (Elsevier, Brighton, 2000), p. 1788

    Chapter  Google Scholar 

  7. P. Meukam, Y. Jannot, A. Noumowe, T.C. Kofane, Constr. Build. Mater. 18, 437 (2004). https://doi.org/10.1016/j.conbuildmat.2004.03.010

    Article  Google Scholar 

  8. A. Khabbazi, M. Garoum, O. Terahmina, J. Adv. Model. Simul. A 74, 73 (2005)

    Google Scholar 

  9. P.S. Ngohe-Ekam, P. Meukam, G. Menguy, P. Girard, Constr. Build. Mater. 20, 929 (2006). https://doi.org/10.1016/j.conbuildmat.2005.06.017

    Article  Google Scholar 

  10. H. Lakrafli, S. Tahiri, A. Albizane, M.E.E. Otmani, J. Constr. Build. Mater. 30, 590 (2012). https://doi.org/10.1016/j.conbuildmat.2011.12.041

    Article  Google Scholar 

  11. H. Lakrafli, S. Tahiri, A. Albizane, M. Bouhria, M.E.E. Otmani, J. Constr. Build. Mater. 48, 566 (2013). https://doi.org/10.1016/j.conbuildmat.2013.07.048

    Article  Google Scholar 

  12. D. Taoukil, F. Sick, A. Mimet, H. Ezbakhe, T. Ajzoul, J. Constr. Build. Mater. 48, 104 (2013). https://doi.org/10.1016/j.conbuildmat.2013.06.067

    Article  Google Scholar 

  13. A. Adili, M. Lachheb, A. Brayek, A. Guizani, S.B. Nasrallah, J. Energy Build. 118, 133 (2016). https://doi.org/10.1016/j.enbuild.2016.02.039

    Article  Google Scholar 

  14. D. Belkharchouche, A. Chaker, Int. J. Hydrogen Energy 41, 7119 (2016). https://doi.org/10.1016/j.ijhydene.2016.01.160

    Article  Google Scholar 

  15. D. Belkharchouche, A. Chaker, Mater. Renew. Sustain. Energy 6, 15 (2017). https://doi.org/10.1007/s40243-017-0099-z

    Article  Google Scholar 

  16. M. Boumhaout, L. Boukhattem, H. Hamdi, B. Benhamou, F.A. Nouh, J. Constr. Build. Mater. 135, 241 (2017). https://doi.org/10.1016/j.conbuildmat.2016.12.217

    Article  Google Scholar 

  17. M. Lamrani, N. Laaroussi, A. Khabbazi, M. Khalfaoui, M. Garoum, A. Feiz, Case Stud. Constr. Mater. 7, 294 (2017). https://doi.org/10.1016/j.cscm.2017.09.006

    Article  Google Scholar 

  18. A. Lachheb, A. Allouhi, M. El Marhoune, R. Saadani, T. Kousksou, A. Jamil, M. Rahmoune, O. Oussouaddia, J. Clean Prod. 209, 1411 (2019). https://doi.org/10.1016/j.jclepro.2018.11.140

    Article  Google Scholar 

  19. M. Ouakarrouch, N. Laaroussi, M. Garoum, J. Renew. Energy Environ. Sustain. 5, 2 (2020). https://doi.org/10.1051/rees/2019011

    Article  ADS  Google Scholar 

  20. Z. Saghrouni, D. Baillis, N. Naouar, N. Blal, A. Jemni, J. Appl. Sci. 9, 981 (2019). https://doi.org/10.3390/app9050981

    Article  Google Scholar 

  21. O. Benjeddou, C. Soussi, M. Benali, R. Alyousef, Arab. J. Sci. Eng. (2020). https://doi.org/10.1007/s13369-020-04362-4

    Article  Google Scholar 

  22. A. Moutarda, J. Leveau, Bulletin technique EI700, Deltalab. (1986)

  23. W.J. Parker, R.J. Jenkins, C.P. Butler, G.L. Abbot, J. Appl. Phys. 32, 1679 (1961). https://doi.org/10.1063/1.1728417

    Article  ADS  Google Scholar 

  24. N. Sotehi, Caractéristiques Thermiques des Parois des Bâtiments et Amélioration de L’isolation, in Ph.D Thesis, Université Mentouri, Constantine. (2010)

  25. M. Bouhhaout, L. Boukhattem, H. Hamdi, B. Benhamou, F.A. Nouh, in The 3d Congress Moroccan Association of Thermal Sciences, vol. 700 (2014), p. 21

  26. Y.E. Rhaffari, M. Boukalouch, A. Khabbazi, A. Samaouali, Y. Geraud, in Matériaux (2010), pp. 18–22

  27. L. Boukhattem, R. Mir, M. Kourchi, A. Bendou, in Rev. Inl. Heliotech. Energy-Environment, vol. 36, (2007), p. 03

  28. J.C. Jaeger, H.S. Carslaw, Conduction of heat in solids, 2nd edn. (Clarendon Press, Oxford, 1959), p. 45

    Google Scholar 

  29. I. Langmuir, E.Q. Adams, F.S. Meikle, Trans. Am. Electrochem. Soc. 24, 53 (1913)

    Google Scholar 

  30. European Standard EN ISO 8990 (1996)

  31. K.P. Rajan, S.P. Thomas, A. Gopanna, M. Chavali, In Nano-and Microscale Drug Delivery Systems (Elsevier, Amsterdam, 2017), pp. 299–319

    Book  Google Scholar 

  32. Q. Ai, Z.W. Hu, M. Liu, X.L. Xia, J. Therm. Anal. Calorim. 128, 289 (2017). https://doi.org/10.1007/s10973-016-5849-0

    Article  Google Scholar 

  33. Y. He, Thermochim. Acta 436, 122 (2005). https://doi.org/10.1016/j.tca.2005.06.026

    Article  Google Scholar 

  34. P. Mosquera, I. Cañas, J. Cid-Falceto, F. Marcos, J. Heat Transf. (2014). https://doi.org/10.1115/1.4025560

    Article  Google Scholar 

  35. L. Kirkup, R.B. Frenkel, An Introduction to Uncertainty in Measurement using the GUM (Guide to the Uncertainty in Measurement) (Cambridge University Press, Cambridge, 2006)

    Book  Google Scholar 

  36. H.W. Coleman, W.G. Steele, Experimentation and Uncertainty Analysis for Engineers, 4th edn. (Wiley, Hoboken, 2018)

    Book  Google Scholar 

  37. V.R. Meyer, J. Chromatogr. A 1158, 15 (2007). https://doi.org/10.1016/j.chroma.2007.02.082

    Article  Google Scholar 

  38. Bibliothèque BINAYATE perspective, National Agency for Energy Efficiency, Morocco (2014)

Download references

Acknowledgments

The authors would like to thank the “National Center for Scientific and Technical Research” for funding this work through the PPR project “Promotion of solar energy and energy efficiency in the oriental region of Morocco”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mouatassim Charai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Charai, M., Sghiouri, H., Mezrhab, A. et al. New Methodology for Measuring the Thermal Conductivity of Small Samples Using the Boxes Method with Reduced Sensors. Int J Thermophys 41, 72 (2020). https://doi.org/10.1007/s10765-020-02649-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-020-02649-0

Keywords

Navigation