Skip to main content

Advertisement

Log in

Experimental and Numerical Evaluation of Thermal Performance of Parabolic Solar Collector Using Water/Al2O3 Nano-fluid: A Case Study

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Energy demand keeps growing all over the world and is contributing to climate change. So, fossil fuels must be replaced by renewable energies. Solar energy is the most accessible energy in Iran as well as in many other countries. Parabolic solar collectors appear to be a very promising technology in solar energy absorption. Meanwhile, nano-fluids are known to improve the heat transfer capabilities in comparison with ordinary pure fluids. In this work, an experimental study was applied to solar collectors using water/Al2O3 nano-fluid located in a renewable energy site of Islamic Azad university of Khomenishahr branch followed by numerical simulations. Experimental tests were conducted for 2, 3, and 4 L·min−1 flow rates with pure water and 0.1 %, 0.2 %, and 0.3 % volume fraction of nanoparticles, respectively, with the results validating the numerical simulations. The results revealed that reductions in flow rate and elevations in volume fraction led to increased outlet temperature of solar collector, inlet and outlet temperature difference in collector, tank and radiator, and improved solar collector efficiency. Also, heat transfer coefficient rose with augmenting the flow rate and volume fraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

A:

Surface area (m2)

\(Q\) :

Heat transfer (J)

\(D\) :

Diameter (m)

\(I\) :

Incidence solar flux (w·m−2)

Re :

Reynolds number

\(S_{m}\) :

Energy generation (w·m−3)

\(U\) :

Velocity vector

\(T\) :

Temperature (\(^\circ C\))

\(f\) :

Friction factor

\(g\) :

Gravity (m·s−2)

\(h\) :

Heat transfer coefficient (w·m−2·k−1)

\(n\) :

Refraction coefficient

\(P\) :

Pressure (Pa)

\(Pr\) :

Prandtl number

\(c_{p}\) :

Specific heat (J·kg−1·k−1)

\(r\) :

Position vector

\(s\) :

Path duration

\(\vec{s}\) :

Direction vector

\(s^{\prime}\) :

Distribution direction vector

\(u_{y}\) :

Velocity component y direction (m·s−1)

\(u_{x}\) :

Velocity component x direction (m·s−1)

\(t\) :

Time (s)

\(in\) :

Inlet parameters

\(out\) :

Outlet parameters

\(np\) :

Nanoparticle

\(bf\) :

Base fluid

\(Q^{,}\) :

State function

\(\tau\) :

Stress tensor

\(\alpha\) :

Absorption coefficient

\(\sigma\) :

Stefan–Boltzmann constant 5.670 367 × 10−8 (kg·s−3·k−4)

\(\sigma_{s}\) :

Scattering coefficient

\(\rho\) :

Density (kg·m−3)

\(\eta\) :

Collector efficiency

\(\varOmega\) :

Solid angel

\(\mu\) :

Dynamic viscosity (kg·m−1·s−1)

References

  1. Z. Cheng, Y. He, F. Cu, R.J. Xu, Y.B. Tao, Numerical simulation of a parabolic trough solar collector with nonuniform solar flux conditions by coupling FVM and MCRT method. Sol. Energy 86, 1770–1784 (2012)

    Article  ADS  Google Scholar 

  2. P. Alamdari, O. Nematollahi, A. Alemrajabi, Solar energy potentials in Iran: a review. Renew. Sustain. Energy Rev. 21, 778–788 (2013)

    Article  Google Scholar 

  3. G. Coccia, G. Di Nicola, L. Colla, L. Fedele, M. Scattoloni, Adoption of Nano fluids in low-enthalpy parabolic trough solar collectors: numerical simulation of the yearly yield. Energy Convers. Manage. 118, 306–319 (2016)

    Article  Google Scholar 

  4. H. Tyagi, P. Phelan, R. Prasher, Predicted efficiency of a low-temperature Nanofluid-based direct absorption solar collector. J. Sol. Energy Eng. 131, 4 (2009)

    Article  Google Scholar 

  5. Q. He, S. Wang, Z. Zheng, Experimental investigation on photo thermal properties of Nanofluids for direct absorption solar thermal energy systems ̏. Energy Convers. Manage. 73, 150–157 (2013)

    Article  Google Scholar 

  6. M. Karami, B. Akhavan, S. Delfani, M. Raisee, Experimental investigation of CuO Nanofluid-based direct absorption solar collector for residential applications. Renew. Sustain. Energy Rev. 52, 793–801 (2015)

    Article  Google Scholar 

  7. T. Yousefi, F. Veysi, E. Shojaeezade, S. Zinadini, An experimental investigation on the effect of Al2O3–H2O Nanofluid on the efficiency of flat-plate solar collectors. Renew. Energy 39, 293–298 (2012)

    Article  Google Scholar 

  8. Q. He, S.H. Zeng, S. Wang, Experimental investigation on the efficiency of flat-plate solar collectors with Nanofluid. Appl. Therm. Eng. 88, 165–171 (2015)

    Article  Google Scholar 

  9. N. Sint, I. Choulhury, H. Masjuki, H. Aoyama, Theoretical analysis to determine the efficiency of a CuO-water Nanofluid based-flat plate solar collector for domestic solar water heating system in Myanmar. Sol. Energy 155, 608–619 (2017)

    Article  ADS  Google Scholar 

  10. J. Ghaderian, N. Sidik, An experimental investigation on the effect of Al2O3/distilled water Nanofluid on the energy efficiency of evacuated tube solar collector. Int. J. Heat Mass Transf. 108, 972–987 (2017)

    Article  Google Scholar 

  11. E. Ghasemi, A. Ranjbar, Thermal performance analysis of solar parabolic trough collector using Nanofluid as working fluid: a CFD modeling study. J. Mol. Liq. 222, 159–166 (2016)

    Article  Google Scholar 

  12. A. Mwesigye, Z.H. Meyerd, Thermal and thermodynamic performance of a parabolic trough receiver with Syltherm800-Al2O3Nanofluid as the heat transfer fluid. Energy Procedia 75, 394–402 (2015)

    Article  Google Scholar 

  13. A. Kasaeian, S. Paviran, R. Azarian, A. Rashidi, Performance evaluation and Nanofluid using capability study of a solar parabolic trough collector. Energy Convers. Manage. 89, 368–375 (2015)

    Article  Google Scholar 

  14. P. Zadeh, M.T. Sokhansefat, A. Kasaeian, F. Kovsay, A. Akbarzade, Hybrid optimization algorithm for thermal analysis in a solar parabolic trough collector based on Nanofluid. Energy 82, 857–864 (2015)

    Article  Google Scholar 

  15. Y. Wang, Q. Liu, J. Lei, H. Jin, Performance analysis of a parabolic trough solar collector with non-uniform solar flux conditions. Int. J. Heat Mass Transf. 82, 236–249 (2015)

    Article  Google Scholar 

  16. A. Menbari, A. Alemrajabi, A. Rezaei, Heat transfer analysis and the effect of CuO/Water Nanofluid on direct absorption concentrating solar collector. Appl. Therm. Eng. 104, 176–183 (2016)

    Article  Google Scholar 

  17. Fluent Release 14.0, User̕s guide, Fluent In C, 2016

  18. Z. Cheng, Y. He, J. Xiao, Y. Tao, R. Xu, Three-dimensional numerical study of heat transfer characteristics in the receiver tube of parabolic trough solar collector. Int. Commun. Heat Mass Transfer 37, 782–787 (2010)

    Article  Google Scholar 

  19. E. Bellos, C. Tivanidis, G. Gkinis, Thermal enhancement of solar parabolic trough collectors by using Nanofluids and converging-diverging absorber tube. Renew Energy 94, 213–222 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milad Babadi Soultanzadeh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nayerdinzadeh, S., Babadi Soultanzadeh, M., Haratian, M. et al. Experimental and Numerical Evaluation of Thermal Performance of Parabolic Solar Collector Using Water/Al2O3 Nano-fluid: A Case Study. Int J Thermophys 41, 59 (2020). https://doi.org/10.1007/s10765-020-02638-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-020-02638-3

Keywords

Navigation