Skip to main content
Log in

Numerical Study to Predict Temperature and Moisture Profiles in Unventilated Grain Silos at Prolonged Time Periods

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The experimental acquisition of data for monitoring cereal grain storage in silos for long periods is not practical in most cases; in such situations, mathematical modeling is an excellent alternative to predict temperature and mass transfer behavior. The model was developed in two dimensions using the equations of heat, mass, and momentum transport. The governing equations were solved using discretization of the spatial coordinates by orthogonal collocation with Jacobi polynomials and the resulting algebraic system was solved by employing nonlinear relaxation method that uses less computational resources. For the ambient boundary conditions, it was used as a more accurate equation to represent the diurnal–nocturnal temperature dynamic. This study analyzes the effects of moisture migration and temperature interactions between the interstitial air and the sorghum cereal grain bed defined as a porous medium in a cylindrical cavity, including the variations affected by meteorological conditions over 1 year. The mass–thermal gradients were predicted, and the effects of environmental temperature were analyzed for flow patterns, isotherms and moisture distribution changes, indicating how the environmental fluctuations influence the heat and moisture of the ambient spots in the grain storage. The maximum temperature inside the silo was 42 °C, considering the respiration heat of the grain, and the maximum temperature of the grain without the climatic boundary conditions was reported to be approximately 35 °C in previous studies. The proposed model can be easily extrapolated to be used for other cereal grains or to incorporate additional effects such as solar radiation, shadow sunlight path, wind velocity, equations to predict more precise ambient temperatures, etc. as boundary conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

A:

Height/radius ratio, L/R

\(a_{v}\) :

Grain–air interfacial area, m2·m−3

\(a_{w}\) :

Water activity, dimensionless

Bi:

Biot number, hcR/keff

C :

Concentration of component, kg·m−3

C A :

Concentration of component A (water vapor or grain moisture), kg·m−3

C P :

Specific heat, J·kg−1·°C−1

D :

Scalar diffusivity, m2·s−1

Da:

Darcy’s number, K/R2

Fo:

Fourier number or dimensionless time, αt/R2

g:

Acceleration of gravity, m·s−2

hc :

Heat transfer coefficient, W·m−1·°C−1

K :

Permeability of the porous media, m2

MA :

Molecular mass of water

MB :

Molecular mass of air

\(\bar{M}\) :

Average molecular mass

k eff :

Thermal conductivity of the porous media, W·m−1·°C−1

k y :

Mass transfer coefficient, m·s−1

L:

Height of the cavity, m

Le:

Lewis number, α/Deff, α/Da

mv :

Mass flow of evaporated water, kg·m−3·s−1

N:

Buoyancy ratio, βCρo(Y1− Y0)/β(T1 − T0)

p :

Hour when the minimum temperature is achieved

P :

Air pressure, mmHg

P o :

Volumetric generation of water by respiration, kg·m−3·s−1

P 0v :

Vapor pressure, mmHg

Pr:

Prandtl number, Cpμ/keff

Q O :

Volumetric heat of respiration of cereal grain, J·m−3·s−1

R:

Radius of the cavity, m

Raf :

Rayleigh number for homogeneous fluid, ρog β (T1 − T0) R3/μ α

Ra:

Rayleigh number for porous medium, ρog β K (T1 − T0) R/μ α

t1 :

Time, days

t2 :

Time, hours

T:

Fluid temperature, °C

u r :

Dimensionless radial velocity

u z :

Dimensionless axial velocity

vβ :

Volume of the continuous phase, m3

W :

Dimensionless humidity in the grain, (X − X0)/(Xi − X0)

X :

Humidity of the grain on a dry basis, kg H2O/kg dry grain

x :

Humidity of the grain on a wet basis, kg H2O/kg dry grain

X 0 :

Initial moisture content, kg H2O/kg dry grain

Y :

Absolute humidity of the air, kg H2O/kg dry air

Y 0 :

Initial absolute moisture, kg H2O/kg dry air

Y i :

Absolute humidity of air in the grain–air interface, kg H2O/kg dry air

α:

Thermal diffusivity of the porous medium, keff/ρCp

β :

Volumetric coefficient of thermal expansion, K−1

β c :

Volumetric coefficient of mass expansion, m3·kg−1

ζ:

Dimensionless axial coordinate, z/L

θ:

Dimensionless temperature, (T − T0)/(T1 − T0)

λ v :

Latent heat of vaporization of water, J·kg−1

μ :

Fluid viscosity, kg·m−1·s−1

ξ:

Dimensionless radial coordinate, r/R

ρ a :

Density of dry air, kg·m−3

ρ B :

Density of the continuous phase, kg·m−3

φ:

Dimensionless absolute humidity in air, (Y − Y0)/(Yi − Y0)

ω :

Dimensionless vorticity

\(\psi\) :

Dimensionless stream function

Β :

Fluid phase

eff :

Property for effective media

max:

Maximum value

min:

Minimum value

∞:

Environment property

0:

Reference state or property evaluated at time 0

1:

Reference property evaluated in the side or top wall of the silo

References

  1. R. Abalone, A. Cassinera, M.A. Lara, Mec. Comput. XXV, 233 (2006)

    Google Scholar 

  2. U. Balzi, R. Abalone, Mec. Comput. XXVII, 1471 (2008)

    Google Scholar 

  3. C. Jia, D.W. Sun, C. Cao, J. Agric. Eng. Res. 76, 323 (2000)

    Article  Google Scholar 

  4. C.-C. Jia, D.-W. Sun, C.-W. Cao, J. Food Eng. 43, 227 (2000)

    Article  Google Scholar 

  5. F. Jian, D.S. Jayas, N.D.G. White, K. Alagusundaram, Trans. ASAE 48, 263 (2005)

    Article  Google Scholar 

  6. F. Jian, D.S. Jayas, N.D.G. White, J. Stored Prod. Res. 45, 82 (2009)

    Article  Google Scholar 

  7. H. Jiménez-Islas, J.L.N.E. Botello-Alvarez, Agrociencia 38, 325 (2004)

    Google Scholar 

  8. J. Lawrence, D.E. Maier, Biosyst. Eng. 110, 321 (2011)

    Article  Google Scholar 

  9. A. Arias Barreto, R. Abalone, A. Gastón, R. Bartosik, Biosyst. Eng. 116, 497 (2013)

    Article  Google Scholar 

  10. J. Lawrence, D.E. Maier, R.L. Stroshine, Trans. ASABE 56, 179 (2013)

    Article  Google Scholar 

  11. F. Jian, V. Chelladurai, D.S. Jayas, N.D.G. White, Trans. ASABE 58, 1135 (2015)

    Google Scholar 

  12. M.D. Montross, D.E. Maier, K. Haghighi, Trans. ASAE 45, 1465 (2002)

    Google Scholar 

  13. J. Lawrence, D.E. Maier, Trans. ASABE 54, 1395 (2011)

    Article  Google Scholar 

  14. A. Arias Barreto, R. Abalone, A. Gastón, D. Ochandio, L. Cardoso, R. Bartosik, Biosyst. Eng. 158, 23 (2017)

    Article  Google Scholar 

  15. R.S. Pohndorf, J.C. da Rocha, I. Lindemann, W.B. Peres, M. de Oliveira, M.C. Elias, J. Food Process Eng 41, e12626 (2018)

    Article  Google Scholar 

  16. M. Carrera-Rodríguez, G.M. Martínez-González, J.L. Navarrete-Bolaños, J.E. Botello-Álvarez, R. Rico-Martínez, H. Jiménez-Islas, J. Stored Prod. Res. 47, 106 (2011)

    Article  Google Scholar 

  17. D. Nield, A. Bejan, Convection In Porous Media (Springer-Verlag, USA, 1992)

    Book  Google Scholar 

  18. O.V. Trevisan, A. Bejan, Int. J. Heat Mass Transf. 28, 1597 (1985)

    Article  Google Scholar 

  19. A. Chattopadhyay, S.K. Pandit, S. Sen Sarma, I. Pop, Int. J. Heat Mass Transf. 93, 361 (2016)

    Article  Google Scholar 

  20. P. Stackhouse, J.A. Barnett, B. Macpherson, D. Westberg, J. Hoell, T. Zhang, NASA Langley Res. Cent. 24, 191–220 (2019)

    Google Scholar 

  21. P.J. Roache, Computational Fluid Dinamics, 1st edn. (Hermosa Publishers, Albuquerque, New Mexico, 1982)

    Google Scholar 

  22. R. Guangyue, L. Yanan, P. Wei, D. Xu, Z. Ledao, Int. J. Agric. Biol. Eng. 9, 214 (2016)

    Google Scholar 

  23. D.E. Ameziani, R. Bennacer, K. Bouhadef, A. Azzi, Int. J. Therm. Sci. 48, 2255 (2009)

    Article  Google Scholar 

  24. Y. Wang, H. Duan, H. Zhang, Z. Fang, J. Therm. Sci. 19, 167 (2010)

    Article  ADS  Google Scholar 

  25. R. Gregori, P. Meriggi, A. Pietri, S. Formenti, G. Baccarini, P. Battilani, Food Control 30, 280 (2013)

    Article  Google Scholar 

  26. J.G. Avila-Acevedo, E. Tsotsas, Int. J. Heat Mass Transf. 51, 3468 (2008)

    Article  Google Scholar 

  27. C. Reed, S. Doyungan, B. Ioerger, A. Getchell, J. Stored Prod. Res. 43, 443 (2007)

    Article  Google Scholar 

  28. E. Raudienė, D. Rušinskas, G. Balčiūnas, G. Juodeikienė, D. Gailius, Mapan - J. Metrol. Soc. India 32, 51 (2017)

    Google Scholar 

  29. D.W. Sun, J.L. Woods, J. Stored Prod. Res. 30, 27 (1994)

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the financial support of CONCYTEG (Grant 09-09-k662-065), Tecnológico Nacional de México, Grant 6655.18-P, and SEP-CONACYT, Grant CB-2011/167095 from Mexico.

Funding

The authors disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: CONCYTEG (Grant 09-09-k662-065), Tecnológico Nacional de México, Grant 6655.18-P, and CONACYT, Grant CB2011/167095.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Jiménez-Islas.

Ethics declarations

Conflict of interest

The authors declared no potential conflict of interest with respect to the research, authorship, and/or publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quemada-Villagómez, L.I., Molina-Herrera, F.I., Carrera-Rodríguez, M. et al. Numerical Study to Predict Temperature and Moisture Profiles in Unventilated Grain Silos at Prolonged Time Periods. Int J Thermophys 41, 52 (2020). https://doi.org/10.1007/s10765-020-02636-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-020-02636-5

Keywords

Navigation