Skip to main content
Log in

Artificial Neural Network for Modeling Thermal Conductivity of Biodiesels with Different Metallic Nanoparticles for Heat Transfer Applications

  • ICPPP 20
  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Thermal conductivity of two types of nanobiodiesels (NBs) was investigated theoretically and experimentally. The first type of NBs (C4-Au) was composed of C4 biodiesel (purchased from Biofuels of Mexico) filled with Au nanoparticles (Au-NPs) and the second type (SB-Ag) was composed of soybean biodiesel (SB) filled with Ag nanoparticles (Ag-NPs). It has been demonstrated in the literature that the addition of Au-NPs or Ag-NPs to biodiesel can lead to a significant increase in thermal properties. The photothermal techniques were used to determine the thermal diffusivity (D), thermal effusivity (e), and thermal conductivity (k) of biodiesel filled with Au-NPs or Ag-NPs for different concentrations. For about two decades, researchers have made the effort to predict the enhancement of the thermal conductivity of nanofluids based on experiments and several theoretical models have been proposed. One of these analytical models, which have allowed researchers to calculate the thermal conductivity of the nanofluids, is the Hamilton–Crosser Model. This model is based on the classical theory of compounds and mixtures containing particles in the order of millimeters or micrometers and fails dramatically in predicting the thermal conductivity of nanofluids. In that sense, the Hamilton–Crosser model (H–C) cannot represent adequately the enhancement in k as a function of NP’s concentration. Then, the artificial neural network (ANN) modeling method was used to predict the thermal conductivity of the two NBs studied in this work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S. Ramkumar, V. Kirubakaran, Energy Convers. Manag. 118, 155 (2016)

    Article  Google Scholar 

  2. R.M. Mostafizur, M.H.U. Bhuiyan, R. Saidur, A.R. Abdul, Int. J. Heat Mass Transf. 76, 350 (2014)

    Article  Google Scholar 

  3. M. Rao, R. Anand, Appl. Therm. Eng. 98, 636 (2016)

    Article  Google Scholar 

  4. E. Ahmadloo, Int. Commun. Heat Mass Transf. 74, 69 (2016)

    Article  Google Scholar 

  5. M. Mosarof, M. Kalam, H. Masjuki, A. Alabdulkarem, M. Habibullah, A. Arslan, I. Monirul, Ind. Crop Prod. 83, 470 (2016)

    Article  Google Scholar 

  6. B. Bhanvasea, S. Kamath, U. Patil, H. Patil, A. Pandit, S. Sonawane, Chem. Eng. Process. 104, 172 (2016)

    Article  Google Scholar 

  7. K. Abdul-Hamid, W. Azmi, R. Mamat, K. Sharma, Int. Commun. Heat Mass 73, 16 (2016)

    Article  Google Scholar 

  8. T. Shaafi, R. Velraj, Renew. Energy 80, 655 (2015)

    Article  Google Scholar 

  9. C. Syed-Aalam, C. Saravanan, Ain Shams Eng. J. 8, 689–696 (2015)

    Article  Google Scholar 

  10. E. Bet-Moushoul, K. Farhadi, Y. Mansourpanah, R. Molaie, M. Forough, A. Mohammad-Nikbakht, Renew. Energy 92, 12 (2016)

    Article  Google Scholar 

  11. J.L. Jiménez-Pérez, G. López-Gamboa, Z.N. Correa-Pacheco, J.F. Sánchez-Ramírez, M. Sánchez-Rivera, M. Salazar-Villanueva, Int. J. Eng. Technol. Res. 3, 162 (2015)

    Google Scholar 

  12. J.L. Jiménez-Pérez, G. López-Gamboa, A. Cruz-Orea, Z.N. Correa-Pacheco, Rev. Mex. Ing. Quim. 14, 481 (2015)

    Google Scholar 

  13. M. Banerjee, B. Dey, J. Talukdar, M. Chandra-Kalita, Energy 69, 695 (2014)

    Article  Google Scholar 

  14. R. Xia, J. Huang, Y. Chen, Y. Feng, Measurement 87, 246 (2016)

    Article  Google Scholar 

  15. M. Marquezini, N. Cella, A. Mansanares, H. Vargas, L. Miranda, Meas. Sci. Technol. 2, 396 (1991)

    Article  ADS  Google Scholar 

  16. R. Carbajal-Valdez, J.L. Jiménez-Pérez, A. Cruz-Orea, Z.N. Correa-Pacheco, M.L. Alvarado-Noguez, I.C. Romero-Ibarra, J.G. Mendoza-Alvarez, Thermochim. Acta 657, 66 (2017)

    Article  Google Scholar 

  17. A. Balderas-Lopéz, D. Acosta-Avalos, J.J. Alvarado, O. Zelaya Angel, F. Sanchez-Sinencio, C. Falcony, A. Cruz-Orea, H. Vargas, Meas. Sci. Technol. 6, 1163 (1995)

    Article  ADS  Google Scholar 

  18. J.L. Jiménez-Pérez, P. Vieyra Pincel, A. Cruz-Orea, Z.N. Correa-Pacheco, Appl. Phys. A 122, 556 (2016)

    Article  ADS  Google Scholar 

  19. S. Siraj, R. Kale, S. Deshmukh, Am. J. Mech. Ind. Eng. 2, 24 (2017)

    Google Scholar 

  20. L. Andreassen, NTNU-Trondheim 1, 28 (2015)

    Google Scholar 

  21. J.L. Jiménez-Pérez, R. Gutiérrez Fuentes, Z.N. Correa-Pacheco, J. Tánori-Cordova, A. Cruz-Orea, Gamboa G. López, Int. J. Thermophys. 36, 1086 (2015)

    Article  ADS  Google Scholar 

  22. A. Akbal, H. Turkdemir, A. Cicek, B. Ulug, J. Spectrosc. (2016). https://doi.org/10.1155/2016/4083421

    Article  Google Scholar 

  23. C.A. Daniels, Polymers: Structure and Properties, 1st edn. (Technomic Publishing Co., Lancaster, 1989), p. 35

    Google Scholar 

  24. Z.N. Correa-Pacheco, A. Cruz-Orea, J.L. Jiménez-Pérez, S.C. Solorzano-Ojeda, C.L. Tramón-Pregnan, Int. J. Thermophys. 36, 873 (2015)

    Article  ADS  Google Scholar 

  25. M. Ventura, E. Simionatto, L.H.C. Andrade, E.L. Simionatto, D. Riva, S.M. Lima, Fuel 103, 506 (2013)

    Article  Google Scholar 

  26. S.M. Lima, M.S. Figueiredo, L.H.C. Andrade, A.R.L. Caíres, S.L. Oliveira, F. Aristone, Appl. Opt. 48, 5728 (2009)

    Article  ADS  Google Scholar 

  27. R.F. Souza, M.A.R.C. Alencar, C.M. Nascimento, M.G.A. da Silva, M.R. Meneghetti, J.M. Hickmann, Proc. SPIE 6323, 63231T (2006)

    Article  Google Scholar 

  28. J. Lin, T. Trabold, M. Walluk, D. Smith, Int. J. Hydrog. Energy 39, 183 (2014)

    Article  Google Scholar 

  29. N. Chandrasekharan, P. Kamat, J. Hu, G. Jones, J. Phys. Chem. B 104, 11103 (2000)

    Article  Google Scholar 

  30. M. Hojjat, S. Etemad, R. Bagheri, J. Thibault, Int. J. Heat Mass Transf. 54, 1017 (2011)

    Article  Google Scholar 

  31. S. Mechiri, V. Vasu, S. Babu, Procedia Eng. 127, 561 (2015)

    Article  Google Scholar 

  32. R.L. Hamilton, O.E. Crosser, Ind. Eng. Chem. Res. 1, 187 (1962)

    Google Scholar 

  33. D. Kumar, H. Patel, V. Rajeev, T. Sundararajan, T. Pradeep, S. Das, Phys. Rev. Lett. 93, 144301 (2004)

    Article  ADS  Google Scholar 

  34. M. Pryazhuikov, A. Minakov, D. Guzei, V. Rudyak, J. Phys: Conf. Ser. 754, 092003 (2016)

    Google Scholar 

  35. C. Harper, Handbook of Electronic Packaging (McGraw-Hill, New York, 1969), p. 5

    Google Scholar 

  36. S.M.S. Murshed, K.C. Leong, C. Yang, Int. J. Therm. Sci. 44, 367 (2005)

    Article  Google Scholar 

Download references

Acknowledgments

Thanks to CONACYT, COFAA, and CGPI-IPN, México, for their partial financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. L. Jiménez-Pérez.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

López-Gamboa, G., Jiménez-Pérez, J.L., Correa-Pacheco, Z.N. et al. Artificial Neural Network for Modeling Thermal Conductivity of Biodiesels with Different Metallic Nanoparticles for Heat Transfer Applications. Int J Thermophys 41, 10 (2020). https://doi.org/10.1007/s10765-019-2590-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-019-2590-5

Keywords

Navigation