Skip to main content

Improving Thermal Diffusivity Measurements by Including Detector Inherent Delayed Response in Laser Flash Method

Abstract

Laser flash experiments are a widely used to determine thermal diffusivity of matter. Especially for thin samples or high diffusive materials, the laser pulse-time delay and its shape may become crucial for precise measurements (“finite pulse-time effect”). An additional delayed response and modification of the shape of the signal can be caused by time delays of detectors and electronic components (e.g., electronic filters) and may be inherent to Laser Flash Apparatuses (LFA). Similar to the correction of the finite pulse-time effect, this detector system inherent delayed response needs to be taken into account, especially for thin or high diffusive materials. To correct for this additional delay, detector signals of direct laser pulses were measured and for correction of this systematic errors a transfer function is derived. It reproduces the detector signal using the pulse shape measured by a diode within the apparatus and thus takes into account the actual laser pulse shape and detector behavior. For the used experimental setup, systematic errors caused by this effect are in the same range than the often considered finite pulse-time effect. As the detector related time delay is system inherent, the developed transfer function can be used to effectively eliminate both, the finite pulse-time delay and the detector inherent delayed response. Besides experimental determinations, synthetic temperature response data are used to quantify the systematic errors related to the additional detector inherent retardation for various thermal diffusivities and sample thicknesses. By not taking the additional delay into account systematic errors > 10 % may arise for both, high and low temperature detectors, indium antimonide (InSb) and MCT (HgCdTe), respectively.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Notes

  1. A comparison of thermal transport properties of POCO Graphite AXM 5Q with literature values would be misleading and expedient as the thermal diffusivity at a given temperature of different specimens may strongly vary (e.g., [52,53,54,55]).

References

  1. V. Cermák, R. Haenel (Eds.), (Schweizerbartsche Verlagsbuchhandlung, Stuttgart, 1982)

  2. S.P. Turner, R. Taylor, High Temp. High Press. 23, 1 (1991)

    Google Scholar 

  3. S. Siegesmund, Geotekt. Forsch. 85, 1 (1996)

    Google Scholar 

  4. K. Horai, G. Simmons, Earth Planet. Sci. Lett. 6, 359 (1969)

    ADS  Google Scholar 

  5. K. Granger, Ch. Gordon, R. Gordon, J. Am. Ceram. Soc. 52, 548 (1969)

    Google Scholar 

  6. T.W. Tong, Thermal Conductivity 22, 1st edn. (Technomic Publishing, Lancaster, 1994), p. 999

    Google Scholar 

  7. U. Seipold, Phys. Earth Planet. Int. 69, 299 (1992)

    ADS  Google Scholar 

  8. G. Buntebarth, Geothermics (Springer, Berlin, 1984), p. 137

    Google Scholar 

  9. W.J. Parker, R.J. Jenkins, C.P. Butler, G.L. Abbott, J. Appl. Phys. 32, 1679 (1961)

    ADS  Google Scholar 

  10. J. Blumm, J. Opfermann, High Temp. High Press. 34, 515 (2002)

    Google Scholar 

  11. F. Cernuschi, L. Lorenzoni, P. Bianchi, A. Figari, Infrared Phys. & Technol. 43, 133 (2002)

    ADS  Google Scholar 

  12. D.W. Swank, W.E. Windes, in Graphite Testing for Nuclear Applications, ed. by A. Tzelepi, M.C. Carroll (ASTM International, West Conshohocken, 2014), p. 186

    Google Scholar 

  13. A.M. Hofmeister, in Infrared Spectroscopy in Geochemistry, Exploration Geochemistry and Remote Sensing, ed. by P.L. King, M.S. Ramsey, G.A. Swayze (Mineralogical Association of Canada, 2004), p. 135

  14. I.M. Abdulagatov, Z.Z. Abdulagatova, S.N. Kallaev, A.G. Bakmaev, P.G. Ranjith, Int. J. Thermophys. 36, 658 (2015)

    ADS  Google Scholar 

  15. N. Akari, A. Makino, J. Mihara, Int. J. Thermophys. 13, 331 (1992)

    ADS  Google Scholar 

  16. A.P.F. Albers, T.A.G. Restivo, L. Pagano, J.B. Baldo, Thermochim. Acta 370, 111 (2001)

    Google Scholar 

  17. P. Schoderböck, H. Klocker, L.S. Sigl, G. Seeber, Int. J. Thermophys. 30, 599 (2009)

    ADS  Google Scholar 

  18. K.-H. Lim, S.-K. Kim, M.-K. Chung, Thermochim. Acta 494, 71 (2009)

    Google Scholar 

  19. J.T. Schriempf, Rev. Scientific Instrum. 43, 781 (1972)

    ADS  Google Scholar 

  20. J.A. McKay, J.T. Schriempf, J. Appl. Phys. 47, 1668 (1976)

    ADS  Google Scholar 

  21. T. Baba, M. Kobayashi, A. Ono, J.H. Hong, M.M. Suliyanti, Thermochim. Acta 218, 329 (1993)

    Google Scholar 

  22. T. Baba, A. Ono, Meas. Sci. Technol. 12, 2046 (2001)

    ADS  Google Scholar 

  23. J.A. Cape, G.W. Lehman, J. Appl. Phys. 34, 1909 (1963)

    ADS  Google Scholar 

  24. R. Cowan, J. Appl. Phys. 34, 926 (1963)

    ADS  Google Scholar 

  25. D.A. Watt, Br. J. Appl. Phys. 17, 231 (1966)

    ADS  Google Scholar 

  26. R.C. Heckman, J. Appl. Phys. 44, 1455 (1973)

    ADS  Google Scholar 

  27. L.M. Clark III, R.E. Taylor, J. Appl. Phys. 46, 714 (1975)

    ADS  Google Scholar 

  28. L. Kehoe, P.V. Kelly, G.M. Crean, Microsys. Technol. 5, 18 (1998)

    Google Scholar 

  29. H.J. Lee, Thermal Diffusivity in Layered and Dispersed Composites, Ph.D. Thesis, Purdue University, 1975

  30. W. Stryczniewicz, A.J. Panas, Comput. Assisted Methods Eng. Sci. 22, 279 (2015)

    Google Scholar 

  31. W. Stryczniewicz, J. Zmywaczyk, A.J. Panas, Int. J. Numer. Methods Heat Fluid Flow 27, 1 (2017)

    Google Scholar 

  32. M. Akoshima, M. Neda, T. Baba, in Thermal Conductivity 31 Thermal Expansion 19, ed. by L.I. Kill, L. St-Georges (DEStech Publications, Lancaster, 2013), p. 22

    Google Scholar 

  33. P.A.M. Dirac, The Principles of Quantum Mechanics, 4th edn. (Clarendon Press, Oxford, 1958)

    MATH  Google Scholar 

  34. R.E. Taylor, J.A. Cape, Appl. Phys. Let. 5, 212 (1964)

    ADS  Google Scholar 

  35. R.E. Taylor, L.M. Clark III, High Temp. High Press. 6, 65 (1974)

    Google Scholar 

  36. K.B. Larson, K. Koyama, J. Appl. Phys. 38, 465 (1967)

    ADS  Google Scholar 

  37. J. Xue, X. Liu, Y. Lian, R. Taylor, Int. J. Thermophys. 14, 123 (1993)

    ADS  Google Scholar 

  38. L. Dusza, High. Temp. High Press. 27/28, 467 (1995)

    Google Scholar 

  39. L. Vozár, W. Hohenauer, High Temp. High Press. 35/36, 253 (2004)

    Google Scholar 

  40. ASTM International, Standard Test Method for Thermal Diffusivity by the Flash Method, E1461-13 (2013)

  41. H.S. Carslaw, J.C. Jaeger, Conduction of Heat in Solids, 2nd edn. (Oxford University Press, New York, 1959)

    MATH  Google Scholar 

  42. J.A. Koski, in Proc. 8th Symp. Thermophys. Prop., Vol. 2 (The Am. Soc. Mech. Eng., New York), 94 (1981)

  43. R.L. McMasters, R.B. Dinwiddie, J. Thermophys. Heat Transf. 24, 818 (2010)

    Google Scholar 

  44. ISO 18755:2005, Fine ceramics (advanced ceramics, advanced technical ceramics)—determination of the thermal diffusivity of monolithic ceramics by laser flash method (2005)

  45. K. Levenberg, Quart. Appl. Math. 2, 164 (1944)

    MathSciNet  Google Scholar 

  46. D. Marquardt, J. Soc. Indust. Appl. Math. 11, 431 (1963)

    MathSciNet  Google Scholar 

  47. L. Vozár, W. Hohenauer, Int. J. Thermophys. 26, 1899 (2005)

    ADS  Google Scholar 

  48. M. Shizawa, K. Mase, in Proc. IEEE Workshop on Visual Motion (Princeton), 164 (1991)

  49. T. Azumi, Y. Takahashi, Rev. Sci. Instrum. 52, 1411 (1981)

    ADS  Google Scholar 

  50. L. Dusza, Wärmetransport-Modelle zur Bestimmung der Temperaturleitfähigkeit von Werkstoffen mit der instationären Laser-Flash Methode, Ph.D. Thesis, Universität Karlsruhe (TH), 1996

  51. F.R. Schilling, Eur. J. Mineral. 11, 1115 (1999)

    ADS  Google Scholar 

  52. M. Akoshima, T. Baba, Int. J. Thermophys. 26, 151 (2005)

    ADS  Google Scholar 

  53. J.G. Hust, NBS Special Pub. 260-89 (Natl. Bur. Stand., Gaithersburg, Maryland, 1984)

  54. T. Baba, A. Cezairliyan, Int. J. Thermophys. 15, 343 (1994)

    ADS  Google Scholar 

  55. M. Scheindlin, D. Halton, M. Musella, C. Rouchi, Rev. Sci. Instrum. 69, 1426 (1998)

    ADS  Google Scholar 

  56. H. Mehling, G. Hautzinger, O. Nilsson, J. Fricke, R. Hofmann, O. Hahn, Int. J. Thermophys. 19, 941 (1998)

    Google Scholar 

  57. M. Akoshima, T. Baba, Int. J. Thermophys. 27, 1189 (2006)

    ADS  Google Scholar 

  58. D.R. Salmon, R. Brandt, R.P. Tye, Int. J. Thermophys. 31, 355 (2010)

    ADS  Google Scholar 

  59. M. Akoshima, H. Abe, T. Baba, Int. J. Thermophys. 36, 3272 (2015)

    ADS  Google Scholar 

  60. M. Ogawa, K. Mukai, T. Fukui, T. Baba, Meas. Sci. Technol. 12, 2058 (2001)

    ADS  Google Scholar 

  61. J. Blumm, A. Lindemann, B. Niedrig, High. Temp. High Press. 35/36, 621 (2007)

    Google Scholar 

  62. M. Akoshima, B. Hay, M. Neda, M. Grelard, Int. J. Thermophys. 34, 778 (2013)

    ADS  Google Scholar 

  63. D.P.H. Hasselman, K.Y. Donaldson, Int. J. Thermophys. 11, 573 (1990)

    ADS  Google Scholar 

  64. D.P.H. Hasselman, G.A. Merkel, J. Am. Ceram. Soc. 72, 967 (1989)

    Google Scholar 

  65. H. Groot, in Thermal Conductivity 20, ed. by D.P.H. Hasselman, J.R. Thomas (Plenum Press, New York, 1989), p. 357

    Google Scholar 

Download references

Acknowledgment

This work was made possible by a foundation of Dr. M. Herrenknecht. The authors want to thank Dr. B.I.R. Müller, Dr. G. de la Flor, and H. Fuchs for constructive discussions and the reviewers for their comments which helped to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Breuer.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Breuer, S., Schilling, F.R. Improving Thermal Diffusivity Measurements by Including Detector Inherent Delayed Response in Laser Flash Method. Int J Thermophys 40, 95 (2019). https://doi.org/10.1007/s10765-019-2562-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-019-2562-9

Keywords

  • Finite pulse-time effect
  • Laser flash method
  • Thermal diffusivity
  • Uncertainty