Skip to main content

Advertisement

Log in

Spectral Phonon Transport Engineering Using Stacked Superlattice Structures

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Materials with ultra-low thermal conductivity have important applications in the areas of thermal insulation and energy harvesting. Thermal conductivity of materials can be greatly tuned by the scattering of phonons with miro-/nanostructures. Here, we show a new method to spectrally engineer the phonon transport by using stacked superlattice structures, which is proved by the studies of one-dimensional atomic chain model. The spectral phonon transmission is obtained using atomistic Green’s function approach. The results show that single superlattice can effectively block phonons due to the formed superlattice phonon bandgaps. When multiple superlattices are stacked in series, phonons can be blocked in a much wider spectral range due to the stacked phonon bandgaps. By design, the thermal conductance can be reduced by ten times across a stacked multiple superlattice structure, and the phonon transmission result shows that most phonons can be effectively scattered except for the ones with very low frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also form part of an ongoing study.

References

  1. C. Chiritescu, D.G. Cahill, N. Nguyen, D. Johnson, A. Bodapati, P. Keblinski, P. Zschack, Science 315, 351 (2007)

    Article  ADS  Google Scholar 

  2. J.-U. Lee, D. Yoon, H. Kim, S.W. Lee, H. Cheong, Phys. Rev. B 83, 081419 (2011)

    Article  ADS  Google Scholar 

  3. D. Ghosh, I. Calizo, D. Teweldebrhan, E.P. Pokatilov, D.L. Nika, A.A. Balandin, W. Bao, F. Miao, C.N. Lau, Appl. Phys. Lett. 92, 151911 (2008)

    Article  ADS  Google Scholar 

  4. A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Nano Lett. 8, 902 (2008)

    Article  ADS  Google Scholar 

  5. D. Nika, S. Ghosh, E. Pokatilov, A. Balandin, Appl. Phys. Lett. 94, 203103 (2009)

    Article  ADS  Google Scholar 

  6. B. Abeles, Phys. Rev. 131, 1906 (1963)

    Article  ADS  Google Scholar 

  7. J. Garg, N. Bonini, B. Kozinsky, N. Marzari, Phys. Rev. Lett. 106, 045901 (2011)

    Article  ADS  Google Scholar 

  8. G. Chen, J. Heat Transfer 119, 220 (1997)

    Article  Google Scholar 

  9. G. Chen, Phys. Rev. B 57, 14958 (1998)

    Article  ADS  Google Scholar 

  10. R. Costescu, D. Cahill, F. Fabreguette, Z. Sechrist, S. George, Science 303, 989 (2004)

    Article  ADS  Google Scholar 

  11. D. Rowe, V. Shukla, J. Appl. Phys. 52, 7421 (1981)

    Article  ADS  Google Scholar 

  12. S. Raghavan, M.J. Mayo, H. Wang, R.B. Dinwiddie, W.D. Porter, Scripta Mater. 39, 1119 (1998)

    Article  Google Scholar 

  13. W. Kim, J. Zide, A. Gossard, D. Klenov, S. Stemmer, A. Shakouri, A. Majumdar, Phys. Rev. Lett. 96, 045901 (2006)

    Article  ADS  Google Scholar 

  14. M.N. Luckyanova et al., Sci. Adv. 4, eaat9460 (2018)

    Article  Google Scholar 

  15. A.R. Abramson, C.-L. Tien, A. Majumdar, J. Heat Transfer 124, 963 (2002)

    Article  Google Scholar 

  16. J. Yang, G. Meisner, L. Chen, Appl. Phys. Lett. 85, 1140 (2004)

    Article  ADS  Google Scholar 

  17. Y. Wang, H. Huang, X. Ruan, Phys. Rev. B 90, 165406 (2014)

    Article  ADS  Google Scholar 

  18. Y. Wang, C. Gu, X. Ruan, Appl. Phys. Lett. 106, 073104 (2015)

    Article  ADS  Google Scholar 

  19. H. Bao, X. Gu, B. Cao, ES Energy Environ. 1, 16 (2018)

    Google Scholar 

  20. W. Zhang, T.S. Fisher, N. Mingo, J. Heat Transfer 129, 483 (2007)

    Article  Google Scholar 

  21. W. Zhang, T.S. Fisher, N. Mingo, Numer. Heat Tranf. B-Fundam. 51, 333 (2007)

    Article  ADS  Google Scholar 

  22. X. Li, R. Yang, J. Phys. Condens. Matter 24, 155302 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (NSFC Grant No. 51776080).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaobo Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, R., Yang, C., Wang, Q. et al. Spectral Phonon Transport Engineering Using Stacked Superlattice Structures. Int J Thermophys 40, 86 (2019). https://doi.org/10.1007/s10765-019-2552-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-019-2552-y

Keywords

Navigation