Skip to main content

Advertisement

Log in

Investigation of Exergy of Double-Pipe Heat Exchanger Using Synthesized Hybrid Nanofluid Developed by Modeling

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Synthesized copper oxide nanoparticles were incorporated on the surfaces of carbon nanotubes using ultrasonication condition and incipient wetness impregnation technique (IWI). Morphological surfaces and structures of the prepared nanocomposite were investigated by the Scanning Electron Microscopy (SEM) and X-ray diffraction (XRD). Results showed a modification of thermophysical properties of prepared hybrid nanofluids compared to untreated carbon nanotube-water. Four parameters (Reynolds number, nanofluid volume fraction, twisted (pitch) ratio, and cavity diameter ratio) were investigated, and their impacts on the exergy efficiency enhancement of double-pipe heat exchanger were determined. Modifying response surface methodology-central composite design (RSM-CCD) to realize the optimal exergy efficiency of the system (98.4 %) showed the possibility to improve all control variables contemporarily and with significant accuracy. There was a strong correlation between the experimental and predicted values by Artificial Neural Network-Genetic Algorithm (ANN-GA) (R2 = 0.92). Minimum mean square error (MSE) was found using a three-layer ANN with 10 neurons in the hidden layer. The results show that the increased Reynolds number and nanofluid volume fraction lead to increases in the heat transfer and exergy efficiency of the system. However, while adding pitches and cavities of the spiral strip to heat exchanger increases heat transfer due to the increasing turbulence flow, at larger pitches and cavity numbers, heat transfer and exergy efficiency were reduced. This was confirmed using two computer-modeling approaches which allow optimization of the exergy of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

Cp :

Specific heat capacity (J·kg−1·K−1)

EX:

Exergy (W)

H:

Height (mm)

k:

Thermal conductivity (W·m−1·K−1)

m:

Mass flow rate (kg·s−1)

Nu:

Nusselt number

ΔP:

Pressure drop (Pa)

Pr:

Prandtl number

Re:

Reynolds number

S:

Entropy (kg·m2·s−2·K−1)

T:

Temperature (K, °C)

TR:

Twisted ratio

TD:

Cavities diameter ratio

ρ :

Density (kg·m−3)

µ :

Viscosity (Ns·m−2)

ε:

Exergetic efficiency

φ:

Volume fraction (%)

bf:

Base fluid

c:

Cold

des:

Desire

gen:

Generation

h:

Hot

in:

Inlet

nf:

Nanofluid

np:

Nanoparticle

out:

Outlet

References

  1. S.U.S. Choi, Nanofluids: from vision to reality through research. J. Heat Transfer 131(3), 9 (2009)

    Article  Google Scholar 

  2. W. Yu, D.M. France, J.L. Routbort, S.U.S. Choi, Review and comparison of nanofluid thermal conductivity and heat transfer enhancements. Heat Transfer Eng. 29, 432–460 (2008)

    Article  ADS  Google Scholar 

  3. T. Tyler, O. Shenderova, G. Cunningham, J. Walsh, J. Drobnik, G. McGuire, Thermal transport properties of diamond-based nanofluids and nanocomposites. Diam. Relat. Mater. 15, 2078–2081 (2006)

    Article  ADS  Google Scholar 

  4. S.K. Das, S.U.S. Choi, H.E. Patel, Heat transfer in nanofluids—a review. Heat Transfer Eng. 27(10), 3–19 (2006)

    Article  ADS  Google Scholar 

  5. M.S. Liu, M.C.C. Lin, I.T. Huang, C.C. Wang, Enhancement of thermal conductivity with carbon nanotube for nanofluids. Int. Commun. Heat Mass Transfer 32, 1202–1210 (2005)

    Article  Google Scholar 

  6. S.U.S. Choi, Z.G. Zhang, P. Keblinski, H.S. Nalwa, Nanofluids. Encyclopedia Nanosci. Nanotechnol. 6, 757–787 (2004)

    Google Scholar 

  7. S.M.S. Murshed, S.H. Tan, N.T. Nguyen, Temperature dependence of interfacial properties and viscosity of nanofluids for droplet-based microfluidics. J. Phys. D Appl. Phys. 41(085502), 1–5 (2008)

    Google Scholar 

  8. K.V. Wong, T. Kurma, Transport properties of alumina nanofluids. Nanotechnology 19, 8 (2008)

    Google Scholar 

  9. K.V. Wong, B. Bonn, S. Vu, S. Samedi. Study of nanofluid natural convection phenomena in rectangular enclosures, in Proceedings of IMECE 2007, Seattle, WA (2007)

  10. H. Masuda, A. Ebata, K. Teramea, N. Hishinuma, Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles. Netsu Buss. 4, 227–233 (1993)

    Article  Google Scholar 

  11. J.A. Eastman, U.S. Choi, S. Li, L.J. Thompson, S. Lee, Enhanced thermal conductivity through the development of nanofluids, in Nanophase and nanocomposite materials II, ed. by S. Komarneni, J.C. Parker, H.J. Wollenberger (Materials Research Society, Pittsburg, 1997), pp. 3–11

    Google Scholar 

  12. W.H. Yu, D.M. France, J.L. Routbort, S.U.S. Choi, Review and comparison of nanofluid thermal conductivity and heat transfer enhancements. Heat Transfer Eng. 29, 432–460 (2009)

    Article  ADS  Google Scholar 

  13. J. Eapen, R. Rusconi, R. Piazza, S. Yip, The classical nature of thermal conduction in nanofluids. J. Heat Transfer 132, 1–14 (2010)

    Article  Google Scholar 

  14. R. Rusconi, E. Rodari, R. Piazza, Optical measurements of the thermal properties of nanofluids. Appl. Phys. Lett. 89, 2619161–2619163 (2006)

    Article  Google Scholar 

  15. S.A. Putnam, D.G. Cahill, P.V. Braun, Thermal conductivity of nanoparticle suspensions. J. Appl. Phys. 99, 0843081–0843086 (2006)

    Article  Google Scholar 

  16. D.C. Venerus, M.S. Kabadi, S. Lee, V. Perez-Luna, Study of thermal transport in nanoparticle suspensions using forced Rayleigh scattering. J. Appl. Phys. 100, 0943101–0943105 (2006)

    Article  Google Scholar 

  17. J. Buongiorno, D.C. Venerus, N. Prabhat, A benchmark study on the thermal conductivity of nanofluids. J. Appl. Phys. 106, 0943121–09431214 (2009)

    Article  Google Scholar 

  18. T. Venkateshan, M. Eswaramoorthi, A review on performance of heat exchangers with different configurations. Int. J. Res. Appl. Sci. Eng. Technol. (IJRASET) 3, 2321–9653 (2015)

    Google Scholar 

  19. G. Zhou, L. Yun Zhu, H. Zhu, S. Tu, J. Jie Lei, Prediction of temperature distribution in shell-and-tube heat exchangers. Energy Procedia 61, 799–802 (2014)

    Article  Google Scholar 

  20. P. Saneipoor, G.F. Naterer, I. Dincer, Transient temperature response of variable flow heat exchangers in a marnoch heat engine. J. Heat Transfer 136(111801), 1–8 (2014)

    Google Scholar 

  21. A.M. Abed, K. Sopian, H.A. Mohammed, M.A. Alghoul, M.H. Ruslan, S. Mat, A. NajahAlShamani, Enhance heat transfer in the channel with V-shaped wavy lower plate using liquid nanofluids. Case Stud. Thermal Eng. 5, 13–23 (2015)

    Article  Google Scholar 

  22. V. Chandraprabu, G. Sankaranarayanan, S. Iniyan, S. Suresh, Heat transfer enhancement characteristics of Al2O3/water and CuO/water nanofluids in a tube in tube condenser fitted with an air conditioning system—an experimental comparison. J. Thermal Sci. Eng. Appl. 6(041004), 1–5 (2014)

    Google Scholar 

  23. Y. Ju-Nam, J.R. Lead, Manufactured nanoparticles: an overview of their chemistry, interactions and potential environmental implications. Sci. Total Environ. 400, 396–414 (2008)

    Article  ADS  Google Scholar 

  24. A. Li, G. Ahmadi, Dispersion and deposition of spherical particles form point sources in a turbulent channel flow. Aerosol Sci. Technol. 16, 209–226 (1992)

    Article  ADS  Google Scholar 

  25. S. Eiamsaard, K. Nanan, C. Thianpong, P. Eiamsaard, Thermal performance evaluation of heat exchanger tubes equipped with coupling twisted-tapes. Exp. Heat Transf. 26, 413 (2013)

    Article  ADS  Google Scholar 

  26. P. Murugesan, K. Mayilsamy, S. Suresh, Heat transfer in tubesfitted with trapezoidal-cut and plain twisted tape inserts. Chem. Eng. Commun. 198, 886 (2011)

    Article  Google Scholar 

  27. M.A. Khairul, M.A. Alim, Heat transfer performance and exergy analyses of a corrugated plate heat exchanger using metal oxide nanofluids. Int. Commun. Heat Mass Transfer 50, 8–14 (2014)

    Article  Google Scholar 

  28. S.S. Khaleduzzaman et al., Energy and exergy analysis of alumina–water nanofluid for an electronic liquid cooling system. Int. Commun. Heat Mass Transfer 57, 118–127 (2014)

    Article  Google Scholar 

  29. W. TaoJi, D. CaiZhang, Y. LingHe, W. QuanTao, Prediction of fully developed turbulent heat transfer of internal helically ribbed tubes – an extension of Gnielinski equation. Int. J. Heat Mass Transf. 55(4), 1375–1384 (2012)

    Article  Google Scholar 

  30. B.S. Massey, in Mechanics of Fluids, 8th ed. Chapter 7 ed. 7.5 (Taylor & Francis, 2006), p. 254. ISBN 0-415-36205-9

  31. R.M. Manglik, A.E. Bergles, Heat transfer and pressure drop correlations for twisted-tape inserts in isothermal tubes: part II—transition and turbulent flows. Heat Transfer 115(4), 890–896 (1993). https://doi.org/10.1115/1.2911384

    Article  Google Scholar 

  32. L. Syam Sundar, K.V. Sharma, Heat transfer enhancements of low volume concentration Al2O3 nanofluid and with longitudinal strip inserts in a circular tube. Int. J. Heat Mass Transf. 53(19–20), 4280–4286 (2010)

    Article  Google Scholar 

  33. J.-Y. Jung, C. Cho, W.H. Lee, Y.T. Kang, Int. J. Heat Mass Transfer 54, 1728–1733 (2011)

    Article  Google Scholar 

  34. J.A. Eastman, S. Choi, S. Li, W. Yu, L. Thompson, Appl. Phys. Lett. 78, 718–720 (2001)

    Article  ADS  Google Scholar 

  35. A.D. Manasrah, U.A. Al-Mubaiyedh, T. Laui, R. BenMansour, M.J. Al-Marri, I.W. Almanassra, A. Abdala, M.A. Atieh, Appl. Therm. Eng. 107, 1008–1018 (2016)

    Article  Google Scholar 

  36. V. Bianco, O. Manca, S. Nardini, Performance analysis of turbulent convection heat transfer of Al2O3 water-nanofluid in circular tubes at constant wall temperature. Energy 77, 403–413 (2014)

    Article  Google Scholar 

  37. M. Siavashi, H.R. TaleshBahrami, H. Saffari, Numerical investigation of flow characteristics, heat transfer and entropy generation of nano-fluid flow inside an annular pipe partially or completely filled with porous media using two. Energy 93, 2451–2466 (2015)

    Article  Google Scholar 

  38. V. Biancoa, O. Manca, S. Nardini, Entropy generation analysis of turbulent convection flow of Al2O3-water nanofluid in a circular tube subjected to constant wall heat flux. Energy Convers. Manage. 77, 306–314 (2014)

    Article  Google Scholar 

  39. D. Huang, Z. Wu, B. Sunden, Pressure drop and convective heat transfer of Al2O3/water and MWCNT/water nano-fluids in a chevron plate heat exchanger. Int. J. Heat Mass Transfer 89, 620–626 (2015)

    Article  Google Scholar 

  40. M. Rahimi-Gorji, O. Pourmehran, M. Hatami, D.D. Ganji, Statistical optimization of micro-channel heat sink (MCHS) geometry cooled by different nanofluids using RSM analysis. Eur. Phys. J. Plus 130(2), 1–21 (2015)

    Article  Google Scholar 

  41. M. HemmatEsfe, S. Esfandeh, S. Saedodin, H. Rostamian, Experimental evaluation, sensitivity analyzation and ANN modeling of thermal conductivity of ZnO-MWCNT/EG-water hybrid nanofluid for engineering applications. Appl. Thermal Eng. 125, 673–685 (2017)

    Article  Google Scholar 

  42. A. Moradikazerouni, A. Hajizadeh, M.R. Safaei, M. Afrand, H. Yarmand, N.W.B.M. Zulkifli, Assessment of thermal conductivity enhancement of nano-antifreeze containing single-walled carbon nanotubes: optimal artificial neural network and curve-fitting. Phys. A Stat. Mech. Its Appl. 521, 138–145 (2019). https://doi.org/10.1016/j.physa.2019.01.051(2019)

    Article  ADS  Google Scholar 

  43. H. Yarmand, M. Afrand, M.R. Safaei, N.W.B.M. Zulkifli, C. Qi, A. Hajizadeh, Evaluating the effect of temperature and concentration on the thermal conductivity of ZnO-TiO2/EG hybrid nanofluid using artificial neural network and curve fitting on experimental data. Phys. A Stat. Mech. Appl. 519, 209–216 (2018). https://doi.org/10.1016/j.physa.2018.12.010(2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatemeh Nasirzadehroshenin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasirzadehroshenin, F., Maddah, H., Sakhaeinia, H. et al. Investigation of Exergy of Double-Pipe Heat Exchanger Using Synthesized Hybrid Nanofluid Developed by Modeling. Int J Thermophys 40, 87 (2019). https://doi.org/10.1007/s10765-019-2551-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-019-2551-z

Keywords

Navigation