Skip to main content

Advertisement

Log in

Transport, Thermodynamic, and Thermophysical Properties of Aqueous Mixtures of Poly (Ethylene Glycol): Experimental and Modeling

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Density (ρ) and viscosity (η) of aqueous mixture containing poly(ethylene glycol)s (PEG)s with seven nominal molecular masses (1500 g·mol−1, 2000 g·mol−1, 3000 g·mol−1, 4000 g·mol−1, 6000 g·mol−1, 8000 g·mol−1, and 20 000 g·mol−1) have been experimentally measured at five temperatures (288.15 K, 293.15 K, 303.15 K, 308.15 K, and 313.15 K) and five concentrations of PEG (0.05, 0.10, 0.15, 0.20, and 0.25 mass fraction), at atmospheric pressure (0.1 MPa). Several thermophysical properties, including the apparent specific volume (\( V_{\varphi } \)), excess molar volume (\( V_{m}^{E} \)), coefficient of thermal expansion (\( \upalpha_{\text{P}} \)), excess coefficient of thermal expansion (\( \upalpha_{P}^{E} \)), were calculated using experimental data. The obtained excess parameters have been used to investigate the inter-intra molecular interactions in the liquid solutions. Moreover, the S-Wilson-NRF and modified UNIQUAC-FV thermodynamic models have been extended for the representation of the density of binary mixtures of PEG + water solutions and the original UNIFAC-VISCO, Z-UNIFAC-VISCO, UNIFAC-Sheng-VISCO, Chain-FV-VISCO, and UNIFAC-vdW-FV-VISCO thermodynamic models were applied to calculate the viscosity of PEG solutions. In addition, an alternative modeling approach in the form of artificial neural networks, developed with an evolutionary algorithm, namely differential evolution algorithm, was used for prediction of density of the mentioned solutions. The results of the neural network model show that this model is suitable for both correlation and prediction of the density of PEG solutions at different PEG molar masses, temperatures, and concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. F. Llovell, R.M. Marcos, L.F. Vega, Free-volume theory coupled with soft-SAFT for viscosity calculations: comparison with molecular simulation and experimental data. J. Phys. Chem. B 117, 8159–8171 (2013)

    Article  Google Scholar 

  2. M.A. Serebryakova, S.V. Dimov, S.P. Bardakhanov, S.A. Novopashin, Thermal conductivity, viscosity and rheology of a suspension based on Al2O3 nanoparticles and mixture of 90% ethylene glycol and 10% water. Int. J. Heat Mass Transf. 83, 187–191 (2015)

    Article  Google Scholar 

  3. L. Sapir, C.B. Stanley, D. Harries, Properties of polyvinylpyrrolidone in a deep eutectic solvent. J. Phys. Chem. A 120, 3253–3259 (2016)

    Article  Google Scholar 

  4. P. Singh, S. Pandey, Solute–solvent interactions within aqueous poly(ethylene glycol): solvatochromic probes for empirical determination and preferential solvation. Green Chem. 9, 254–261 (2007)

    Article  Google Scholar 

  5. C.N. Schubert, W.I. Echter, The method of polymer ethylene glycol for removal pollution from gases. CN. Patent 1364096A, 2002

  6. J.M. Harris, Poly(Ethylene Glycol) Chemistry: Biotechnical and Biomedical Applications (Plenum, New York, 1992)

    Book  Google Scholar 

  7. J.M. Harris, S. Zalipsky, Poly(Ethylene Glycol) Chemistry and Biological Applications, ACS Symposium Series 680 (American Chemical Society, Washington, DC, 1997)

    Book  Google Scholar 

  8. J. Chen, S.K. Spear, J.G. Huddleston, R.D. Rogers, Green Chem. 7, 64 (2005)

    Article  Google Scholar 

  9. J.C.W. Lan, C.Y. Yeh, C.C. Wang, Y.H. Yang, H.S. Wu, J.C.W. Lan, C.Y. Yeh, C.C. Wang, Y.H. Yang, H.S. Wu, Partition separation and characterization of the polyhydroxyalkanoates synthase produced from recombinant Escherichia coli using an aqueous two-phase system. J. Biosci. Bioeng. 116, 499–505 (2013)

    Article  Google Scholar 

  10. A. Kianmehr, M. Pooraskari, B. Mousavikoodehi, S.S. Mostafavi, Recombinant d-galactose dehydrogenase partitioning in aqueous two-phase systems: effect of pH and concentration of PEG and ammonium sulfate. Bioresour. Bioprocess. 1, 2–8 (2013)

    Google Scholar 

  11. L.A.P. Alcântara, I.V. Amaral, R.C.F. Amaral, L.H.M. Bonomo, V.P.R. da Silva, Partitioning of α-lactalbumin and β-lactoglobulin from cheese whey in aqueous two-phase systems containing poly (ethylene glycol) and sodium polyacrylate. Food Bioprod. Process. 92, 409–415 (2014)

    Article  Google Scholar 

  12. S.M. Dehnavi, G. Pazuki, M. Vossoughi, PEGylated silica-enzyme nanoconjugates: a new frontier in large scale separation of α-amylase. Sci. Rep. 5, 1–9 (2015)

    Google Scholar 

  13. D. de Araujo Sampaio, L. Igarashi Mafra, E.F. Yamamoto, M.O. de Souza, M. Rogério Mafra, F. de Castilhos, Caffeine extraction: equilibrium diagrams and partitioning study. J. Chem. Thermodyn. 98, 86–94 (2016)

    Article  Google Scholar 

  14. C. Fruijtier-Pölloth, Assessment on polyethylene glycols (PEGs) and their derivatives as used in cosmetic products. Toxicology 214, 1–38 (2005)

    Article  Google Scholar 

  15. S. Shahriari, G. Doozandeh, G. Pazuki, Partitioning of cephalexin in aqueous two-phase systems containing poly (ethylene glycol) and sodium citrate salt at different temperatures. J. Chem. Eng. Data 57, 256–262 (2012)

    Article  Google Scholar 

  16. B. Madadi, G. Pazuki, B. Nasernejad, Partitioning of cefazolin in biocompatible aqueous biphasic systems based on surfactant. J. Chem. Eng. Data 58, 2786–2792 (2013)

    Article  Google Scholar 

  17. M.S. Cruz, L.D. Chumpitaz, J.G.L. Alves, A.J. Meirelles, Kinematic viscosities of poly (ethylene glycols). J. Chem. Eng. Data 45, 61–63 (2000)

    Article  Google Scholar 

  18. M. Bayat, M.R. Mehrnia, M. Hosseinzadeh, R. Meirelles, Petrochemical wastewater treatment and reuse by MBR: a pilot study for ethylene oxide/ethylene glycol and olefin units. J. Ind. Eng. Chem. 25, 265–271 (2015)

    Article  Google Scholar 

  19. B.Y. Chen, Y.S. Wang, H.Y. Mi, P. Yu, X.F. Peng, J.S. Wen, Effect of poly (ethylene glycol) on the properties and foaming behavior of macroporous poly (lactic acid)/sodium chloride scaffold. J. Appl. Polym. Sci. 131, 41181/1–41181/10 (2014)

    Google Scholar 

  20. Costa B. de Sá, E.E. Garcia-Rojas, J.S.D.R. Coimbra, J.A. Teixeira, J. Telis-Romero, Density, refractive index, apparent specific volume, and electrical conductivity of aqueous solutions of poly (ethylene glycol) 1500 at different temperatures. J. Chem. Eng. Data 59, 339–345 (2014)

    Article  Google Scholar 

  21. M. Moosavi, A. Motahari, A. Omrani, A.A. Rostami, Investigation on some thermophysical properties of poly (ethylene glycol) binary mixtures at different temperatures. J. Chem. Thermodyn. 58, 340–350 (2013)

    Article  Google Scholar 

  22. A. Arce, A. Soto, Physical and excess properties of binary and ternary mixtures of 1,1-dimethylethoxy-butane, methanol, ethanol and water at 298.15 K. Thermochim. Acta. 435, 197–201 (2005)

    Article  Google Scholar 

  23. V. Campos, A.C. Gómez Marigliano, H.N. Sólimo, Density, viscosity, refractive index, excess molar volume, viscosity, and refractive index deviations and their correlations for the (formamide + water) system. J. Chem. Eng. Data 53, 211–216 (2007)

    Article  Google Scholar 

  24. A.V. Doghaei, A.A. Rostami, A. Omrani, Densities, viscosities, and volumetric properties of binary mixtures of 1,2-propanediol + 1-heptanol or 1-hexanol and 1,2-ethanediol + 2-butanol or 2-propanol at T = (298.15, 303.15, and 308.15) K. J. Chem. Eng. Data 55, 2894–2899 (2010)

    Article  Google Scholar 

  25. S. Atashrouz, M. Zarghampour, S. Abdolrahimi, G. Pazuki, B. Nasernejad, Estimation of the viscosity of ionic liquids containing binary mixtures based on the Eyring’s theory and a modified Gibbs energy model. J. Chem. Eng. Data 59, 3691–3704 (2014)

    Article  Google Scholar 

  26. V.K. Sharma, S. Solanki, S. Bhagour, Thermodynamic properties of ternary mixtures containing ionic liquid and organic liquids: excess molar volume and excess isentropic compressibility. J. Chem. Eng. Data 59, 1140–1157 (2014)

    Article  Google Scholar 

  27. S. Trivedi, C. Bhanot, Densities of poly (ethylene glycol) + water over the temperature range (283.15 to 363.15) K. J. Chem. Thermodyn. 42, 1367–1371 (2010)

    Article  Google Scholar 

  28. Sh Ebrahimi, R. Sadeghi, Density, speed of sound, and viscosity of some binary and ternary aqueous polymer solutions at different temperatures. J. Chem. Eng. Data 60, 3132–3147 (2015)

    Article  Google Scholar 

  29. F. Han, J. Zhang, G. Chen, X. Wei, Density, viscosity, and excess properties for aqueous poly (ethylene glycol) solutions from (298.15 to 323.15) K. J. Chem. Eng. Data 53, 2598–2601 (2015)

    Article  Google Scholar 

  30. A. Eliassi, H. Modarress, G.A. Mansoori, Densities of poly (ethylene glycol) + water mixtures in the 298.15–328.15 K temperature range. J. Chem. Eng. Data 43, 719–721 (1998)

    Article  Google Scholar 

  31. M. Mohsen-Nia, H. Modarress, H. Rasa, Measurement and modeling of density, kinematic viscosity, and refractive index for poly (ethylene glycol) aqueous solution at different temperatures. J. Chem. Eng. Data 50, 1662–1666 (2005)

    Article  Google Scholar 

  32. R.M. Silva, L.A. Minim, J.S. Coimbra, E.E.G. Rojas, L.H.M. da Silva, V.P.R. Minim, Density, electrical conductivity, kinematic viscosity, and refractive index of binary mixtures containing poly (ethylene glycol) 4000, lithium sulfate, and water at different temperatures. J. Chem. Eng. Data 52, 1567–1570 (2007)

    Article  Google Scholar 

  33. M. Pirdashti, K. Movagharnejad, A.A. Rostami, P. Akbarpour, M. Ketabi, Liquid–liquid equilibrium data, viscosities, densities, conductivities, and refractive indexes of aqueous mixtures of poly (ethylene glycol) with trisodium citrate at different pH. J. Chem. Eng. Data 60, 3423–3429 (2015)

    Article  Google Scholar 

  34. G.A. Rodríguez, A.R. Holguín, F. Martínez, M. Khoubnasabjafari, A. Jouyban, Volumetric properties of (PEG 400 + water) and (PEG 400 + ethanol) mixtures at several temperatures and correlation with the Jouyban–Acree model. Rev. Colomb. Cienc. Quím. Farm. 41, 187–202 (2012)

    Google Scholar 

  35. S. Kirinčiča, C. Klofutarb, Viscosity of aqueous solutions of poly (ethylene glycol) s at 298.15 K. Fluid Phase Equilib. 155, 311–325 (1999)

    Article  Google Scholar 

  36. I. Regupathi, S. Murugesan, S.P. Amaresh, R. Govindarajan, M. Thanabalan, Densities and viscosities of poly (ethylene glycol) 4000 + diammonium hydrogen phosphate + water systems. J. Chem. Eng. Data 54, 1100–1106 (2009)

    Article  Google Scholar 

  37. A. Jouyban, S.H. Soltanpour, W.E. Acree Jr., Solubility of acetaminophen and ibuprofen in the mixtures of polyethylene glycol 200 or 400 with ethanol and water and the density of solute-free mixed solvents at 298.2 K. J. Chem. Eng. Data 55, 5252–5257 (2010)

    Article  Google Scholar 

  38. T. Murugesan, M. Perumalsamy, I. Regupathi, Densities and viscosities of polyethylene glycol 2000 + salt + water systems from (298.15 to 318.15) K. J. Chem. Eng. Data 50, 1290–1293 (2005)

    Article  Google Scholar 

  39. T.A. Graber, H. Galleguillos, J.A. Asenjo, B.A. Andrews, Refractive index, density, and viscosity in the NaNO3 + H2O + poly (ethylene glycol) system at various temperatures. J. Chem. Eng. Data 47, 174–178 (2002)

    Article  Google Scholar 

  40. R. Sadeghi, M.T. Zafarani-Moattar, A. Salabat, Density modeling of polymer solutions with extended segment-based local composition nonrandom two-liquid (NRTL), wilson, and nonrandom factor (NRF) models. Ind. Eng. Chem. Res. 475, 2156–2162 (2002)

    Google Scholar 

  41. K. Zhang, J. Yang, X. Yu, J. Zhang, X. Wei, Densities and viscosities for binary mixtures of poly (ethylene glycol) 400 + dimethyl sulfoxide and poly (ethylene glycol) 600 + water at different temperatures. J. Chem. Eng. Data 56, 3083–3088 (2011)

    Article  Google Scholar 

  42. Y.P. Jimenez, M.E. Taboada, T.A. Graber, H.R. Galleguillos, Measurement and modeling of density and viscosity of the NaClO4 + H2O + poly (ethylene glycol) system at various temperatures. Fluid Phase Equilib. 334, 22–29 (2012)

    Article  Google Scholar 

  43. M. Pirdashti, S. Curteanu, M.H. Kamangar, M.H. Hassim, M.A. Khatami, Artificial neural networks: applications in chemical engineering. Rev. Chem. Eng. 29, 205–239 (2013)

    Article  Google Scholar 

  44. S. Sheikh, M. Bagherpour, Estimating the saturation thermodynamic properties of propene using a feed forward neural network. World Appl. Sci. J. 4, 169–173 (2008)

    Google Scholar 

  45. F. Gharagheizi, G.R. Salehi, Prediction of enthalpy of fusion of pure compounds using an artificial neural network-group contribution method. Thermochim. Acta 521, 37–40 (2011)

    Article  Google Scholar 

  46. A.N. Soriano, K.F.P. Ornedo-Ramos, C.A.M. Muriel, A.P. Adornado, V.C. Bungay, M.H. Li, Prediction of refractive index of binary solutions consisting of ionic liquids and alcohols (methanol or ethanol or 1-propanol) using artificial neural network. J Taiwan Inst. Chem. Eng. 65, 83–90 (2016)

    Article  Google Scholar 

  47. L. Bernazzani, C. Duce, A. Micheli, V. Mollica, M.R. Tiné, Quantitative structure–property relationship (QSPR) prediction of solvation Gibbs energy of bifunctional compounds by recursive neural networks. J. Chem. Eng. Data 55, 5425–5428 (2010)

    Article  Google Scholar 

  48. Á. Mulero, M. Pierantozzi, I. Cachadiña, G.D. Nicola, An artificial neural network for the surface tension of alcohols. Fluid Phase Equilib. 449, 28–40 (2017)

    Article  Google Scholar 

  49. A. Roosta, B. Sadeghi, Surface tension estimation of binary mixtures of organic compounds using artificial neural networks. Chem. Eng. Commun. 203, 1349–1358 (2016)

    Article  Google Scholar 

  50. E.G. Lemraski, Z. Pouyanfar, Prediction of surface tension, surface mole fraction and thickness of the surface layer in the ionic liquid binary mixtures. J. Mol. Liq. 203, 52–58 (2015)

    Article  Google Scholar 

  51. Z. Jiang, Z. Zhang, K. Friedrich, Prediction on wear properties of polymer composites with artificial neural networks. Compos. Sci. Technol. 67, 68–176 (2007)

    Google Scholar 

  52. Z. Jiang, Z. Zhang, K. Friedrich, Equation of state and artificial neural network to predict the thermodynamic properties of pure and mixture of liquid alkali metals. Fluid Phase Equilib. 370, 43–49 (2014)

    Article  Google Scholar 

  53. F. Gharagheizi, A. Eslamimanesh, A.H. Mohammadi, D. Richon, Representation/prediction of solubilities of pure compounds in water using artificial neural network-group contribution method. J. Chem. Eng. Data 56, 720–726 (2011)

    Article  Google Scholar 

  54. A. Haghtalab, A. Shojaeian, E. Ebrahimiagda, D. Richon, A new segmental local composition model for calculation of thermodynamic properties of binary polymer solutions. Sci. Iran. C 21, 2087–2097 (2014)

    Google Scholar 

  55. M. Pirdashti, K. Movagharnejad, P. Mobalegholeslam, H. Pirdashti, Liquid–liquid equilibrium of poly (ethylene glycol) 4000 + sodium sulfate + urea/guanidine hydrochloride aqueous two-phase systems at different pH: experimental results and thermodynamic modeling. Fluid Phase Equilib. 427, 460–475 (2016)

    Article  Google Scholar 

  56. A. Fredenslund, J. Gmehling, M.L. Michelsen, P. Rasmussen, J.M. Prausnitz, Computerized design of multicomponent distillation columns using the UNIFAC group contribution method for calculation of activity coefficients. Ind. Eng. Chem. Process Des. Dev. 16, 450–462 (1977)

    Article  Google Scholar 

  57. C. Zhong, Y. Sato, H. Masuoka, X. Chen, Improvement of predictive accuracy of the UNIFAC model for vapor–liquid equilibria of polymer solutions. Fluid Phase Equilib. 123, 97–106 (1996)

    Article  Google Scholar 

  58. Y.J. Sheng, Y.P. Chen, D.S.H. Wong, A cubic equation of state for predicting vapor–liquid equilibria of hydrocarbon mixtures using a group contribution mixing rule. Fluid Phase Equilib. 46, 197–210 (1989)

    Article  Google Scholar 

  59. G.M. Kontogeorgis, G.I. Nikolopoulos, A. Fredenslund, D.P. Tassios, Improved models for the prediction of activity coefficients in nearly athermal mixtures Part II. A theoretically-based GE-model based on the van der Waals partition function. Fluid Phase Equilib. 127, 103–121 (1997)

    Article  Google Scholar 

  60. D. Kannan, J. Duda, R. Danner, A free-volume term based on the van der Waals partition function for the UNIFAC model. Fluid Phase Equilib. 228, 321–328 (2005)

    Article  Google Scholar 

  61. M. Rahbari-Sisakht, M. Taghizadeh, A. Eliassi, Densities and viscosities of binary mixtures of poly (ethylene glycol) and poly (propylene glycol) in water and ethanol in the 293.15–338.15 K temperature range. J. Chem. Eng. Data. 48, 1221–1224 (2003)

    Article  Google Scholar 

  62. L.H. Mei, L. Dong-Qiang, Zh Zi-Qiang, H. Zhao-Xiong, Densities and viscosities of polyethylene glycol + salt + water systems at 20 C. J. Chem. Eng. Data 40, 1168–1171 (1995)

    Article  Google Scholar 

  63. S. Kalaivani, C.K. Srikanth, I. Regupathi, Densities and viscosities of binary and ternary mixtures and aqueous two-phase system of poly (ethylene glycol) 2000 + di ammonium hydrogen citrate + water at different temperatures. J. Chem. Eng. Data 57, 2528–2534 (2012)

    Article  Google Scholar 

  64. R.D.C. Cruz, R.J. Martins, M.J.D.M. Cardoso, O.E. Barcia, Volumetric study of aqueous solutions of polyethylene glycol as a function of the polymer molar mass in the temperature range 283.15 to 313.15 K and 0.1 MPa. J. Solut. Chem. 38, 957–981 (2009)

    Article  Google Scholar 

  65. M. Perumalsamy, T. Murugesan, Phase compositions, molar mass, and temperature effect on densities, viscosities, and liquid-liquid equilibrium of polyethylene glycol and salt-based aqueous two-phase systems. J. Chem. Eng. Data 54, 1359–1366 (2009)

    Article  Google Scholar 

  66. I. Regupathi, R. Govindarajan, S. Pandian Amaresh, T. Murugesan, Densities and viscosities of polyethylene glycol 6000 + triammonium citrate + water systems. J. Chem. Eng. Data 54, 3291–3295 (2009)

    Article  Google Scholar 

  67. R.D.C. Cruz, R.J. Martins, M.J.D.M. Cardoso, O.E. Barcia, Volumetric study of aqueous solutions of poly (ethylene glycol) from 283.15 to 313.15 K and at 0.1 MPa. J. Appl. Polym. Sci. 91, 2685–2689 (2004)

    Article  Google Scholar 

  68. P. Gonzalez-Tello, F. Camacho, G. Blazquez, Density and viscosity of concentrated aqueous solutions of polyethylene glycol. J. Chem. Eng. Data 54, 1359–1366 (2009)

    Article  Google Scholar 

  69. P. Gonzalez-Tello, F. Camacho, G. Blazquez, Density and viscosity of concentrated aqueous solutions of polyethylene glycol. J. Chem. Eng. Data 39, 611–614 (1994)

    Article  Google Scholar 

  70. M.A. Iglesias-Otero, J. Troncoso, E. Carballo, L. Romaní, Density and refractive index in mixtures of ionic liquids and organic solvents: correlations and predictions. J. Chem. Thermodyn. 40, 949–956 (2008)

    Article  Google Scholar 

  71. L. Lepori, V. Mollica, Volumetric properties of dilute aqueous solutions of polyethylene glycol. J. Polym. Sci. Polym. Phys. Ed. 16, 1123–1134 (1978)

    Article  ADS  Google Scholar 

  72. R. Zana, Partial molal volumes of polymers in aqueous solutions from partial molal volume group contributions. J. Polym. Sci. Polym. Phys. Ed. 18, 121–126 (1980)

    Article  ADS  Google Scholar 

  73. R. Sadeghi, F. Ziamajidi, Volumetric and isentropic compressibility behaviour of aqueous solutions of polyvinylpyrrolidone + sodium citrate at T = (283.15 to 308.15) K. J. Chem. Thermodyn. 39, 1118–1124 (2007)

    Article  Google Scholar 

  74. U. Domanaska, M. Zawadzki, A. Lewandrowska, Effect of temperature and composition on the density, viscosity, surface tension, and thermodynamic properties of binary mixtures of N-octylisoquinolinium bis (trifluoromethyl) sulfonyl imide with alcohols. J. Chem. Thermodyn. 48, 101–111 (2012)

    Article  Google Scholar 

  75. C. Wohlfarth, Vapor–Liquid Equilibrium Data of Binary Polymer Solutions, 1st edn. (Elsevier, Amsterdam, 1994)

    Google Scholar 

  76. J. Chevalier, P. Petrino, Y. Gaston-Bonhomme, Estimation method for the kinematic viscosity of a liquid-phase mixture. Chem. Eng. Sci. 43, 1303–1309 (1988)

    Article  Google Scholar 

  77. S. Curteanu, G.D. Suditu, A. Buburuzan, E.N. Dragoi, Neural networks and differential evolution algorithm applied for modelling the depollution process of some gaseous streams. Environ. Sci. Pollut. Res. 21, 12856–12867 (2014)

    Article  Google Scholar 

  78. P. Kevin, K. Paul, Artificial Neural Networks (SPIE Press, Washington, 2005)

    Google Scholar 

  79. A. Barani, M. Pirdashti, Z. Heidari, E.N. Dragoi, Influence of the molecular weight of polymer, temperature and pH on phase diagrams of poly (ethylene glycol) + di-potassium tartrate aqueous two-phase systems. Fluid Phase Equilib. 459C, 1–9 (2018)

    Article  Google Scholar 

  80. J.A. Nelder, R. Mead, A simplex method for function minimization. Comput. J. 7, 308–313 (1965)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Pirdashti.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1.5 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pirdashti, M., Ketabi, M., Mobalegholeslam, P. et al. Transport, Thermodynamic, and Thermophysical Properties of Aqueous Mixtures of Poly (Ethylene Glycol): Experimental and Modeling. Int J Thermophys 40, 84 (2019). https://doi.org/10.1007/s10765-019-2545-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-019-2545-x

Keywords

Navigation