Skip to main content
Log in

Simple Regression Model for Estimating Reflectance Reduction due to Random Surface Roughness

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Radiative properties of rough surfaces differ from those of smooth surfaces due to their tendency to scatter electromagnetic waves. Accurate evaluation of property change of rough surfaces requires theoretical background and numerical techniques for solving the scattering of electromagnetic waves, which is challenging and time-consuming. Therefore, this study proposes a simple regression model for estimating the reflectance reduction due to random surface roughness. Because reflectance reduction is significant when multiple reflections occur due to large surface roughness, a Monte Carlo ray-tracing (MCRT) method based on geometric optics approximation was used to evaluate reflectance reduction. Then, a regression analysis based on the numerical results of the MCRT method was implemented. A regression equation was derived as a function of the smooth-surface reflectance and a roughness slope parameter. For silicon and aluminum surfaces, the results of the proposed regression model agreed with those obtained using the MCRT method under 4.4 % error limit. Hopefully, the proposed model can be used to easily bridge between radiative properties of rough surfaces and statistics of surface roughness without relying on laborious numerical techniques for light scattering problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

f r :

Bidirectional reflectance distribution function (BRDF)

p :

Gaussian distribution function

R :

(Directional-hemispherical) reflectance of rough surfaces

R 0 :

(Directional-hemispherical) reflectance of smooth surfaces

w :

Root-mean-square slope, \( w = \sqrt 2 \upsigma /\uptau \)

θi :

Zenith angle of incidence

λ:

Wavelength in vacuum

ξ:

Height of surface roughness

σ:

Root-mean-square roughness

τ:

Autocorrelation length

ψ:

Local incidence angle

References

  1. Z.M. Zhang, Annual review of heat transfer, vol. 11 (Begell House, New York, 2000), p. 351

    Google Scholar 

  2. C.-D. Wen, T.-Y. Chai, Appl. Therm. Eng. 31, 2414 (2011)

    Article  Google Scholar 

  3. R. Siegel, J.R. Howell, Thermal radiation heat transfer, 4th edn. (Taylor & Francis, New York, 2002)

    Google Scholar 

  4. K.F. Warnick, W.C. Chew, Waves Random Complex 11, R1 (2001)

    Article  ADS  Google Scholar 

  5. M. Nieto-Vesperinas, J.M. Soto-Crespo, Opt. Lett. 12, 979 (1987)

    Article  ADS  Google Scholar 

  6. K. Fu, P.F. Hsu, Int. J. Thermophys. 28, 598 (2007)

    Article  ADS  Google Scholar 

  7. Y. Xuan, Y. Han, Y. Zhou, Int. J. Thermophys. 33, 2291 (2012)

    Article  ADS  Google Scholar 

  8. J. Qiu, W.J. Zhang, L.H. Liu, P.F. Hsu, L.J. Liu, J. Opt. Soc. Am. A 31, 1251 (2014)

    Article  ADS  Google Scholar 

  9. R.A. Dimenna, R.O. Buckius, J. Thermophys. Heat Transf. 8, 393 (1994)

    Article  Google Scholar 

  10. K. Fu, P.F. Hsu, J. Quant. Spectrosc. Radiat. Transf. 109, 180 (2008)

    Article  ADS  Google Scholar 

  11. F. Ghmari, I. Sassi, M.S. Sifaoui, Waves Random Complex 15, 469 (2005)

    Article  ADS  Google Scholar 

  12. H.J. Lee, A.C. Bryson, Z.M. Zhang, Int. J. Thermophys. 28, 918 (2006)

    Article  ADS  Google Scholar 

  13. Y.-P. Zhao, G.-C. Wang, T.-M. Lu, Characterization of amorphous and crystalline rough surface: principles and applications (Academic Press, San Diego, 2001)

    Google Scholar 

  14. J.A. Ogilvy, Theory of wave scattering from random rough surfaces, A (Hilger, Bristol, 1991)

    Book  Google Scholar 

  15. K. Tang, R.A. Dimenna, R.O. Buckius, Int. J. Heat Mass Transf. 40, 49 (1997)

    Article  Google Scholar 

  16. Q.Z. Zhu, H.J. Lee, Z.M. Zhang, J. Thermophys. Heat Transf. 19, 548 (2005)

    Article  Google Scholar 

  17. K. Tang, R.O. Buckius, Int. J. Heat Mass Transf. 41, 2037 (1998)

    Article  Google Scholar 

  18. H.J. Lee, Y.B. Chen, Z.M. Zhang, Int. J. Heat Mass Transf. 49, 4482 (2006)

    Article  Google Scholar 

  19. J.L. King, H. Jo, S.K. Loyalka, R.V. Tompson, K. Sridharan, Int. J. Heat Mass Transf. 109, 894 (2017)

    Article  Google Scholar 

  20. E.I. Thorsos, J. Acoust. Soc. Am. 83, 78 (1988)

    Article  ADS  Google Scholar 

  21. K.E. Torrance, E.M. Sparrow, J. Opt. Soc. Am. 57, 1105 (1967)

    Article  ADS  Google Scholar 

  22. K. Tang, R.O. Buckius, Int. J. Heat Mass Transf. 44, 4059 (2001)

    Article  Google Scholar 

  23. E.D. Palik, Handbook of optical constants of solids (Academic Press, Orlando, 1985)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF) grants funded by the Korea government (MSIT) (Nos. 2016R1A2B4012875 and 2018M1A3A3A02065823).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. J. Lee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, H.J. Simple Regression Model for Estimating Reflectance Reduction due to Random Surface Roughness. Int J Thermophys 40, 55 (2019). https://doi.org/10.1007/s10765-019-2523-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-019-2523-3

Keywords

Navigation