Skip to main content
Log in

Experimental and Numerical Investigation of Thermo-Mechanical Properties for Nano-Geocomposite

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Heat transfer in dry granular material is dominated by conduction among the grains. The quality and quantity of the contact dictate the preferred heat path. Owing to the high thermal conductivity and considerable mechanical strength, nanomaterials are suitable to improve the contact by filling inter- and intra-granular pores. A thermo-mechanical study with 0–5 weight percentage of 63 nm and 125 nm silicon carbide (SiC)/sand mixtures has been conducted. A numerical model based on a modified effective-medium approximation considering the effective mean free path is implemented in the lattice element method with gas theory to predict the ETC of the mixtures. The numerical modeling and experimental results showed satisfactory agreement to a large extent. To test the mechanical stability of the developed mix, direct shear test and consolidation tests have been performed on the nano-geomixture to observe changes in the mechanical strength due to a powder-like appearance of SiC. No significant reduction in strength and settlement behavior of the mixture has been reported. The developed nanocomposite could be used in energy geotechnics application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

h TTC :

Total contact conductivity (W·m−1·K−1)

h G :

Granular conductivity (W·m−1·K−1)

h N :

Nanoparticle conductivity (W·m−1·K−1)

C i :

Volumetric heat capacity per unit energy (J·m−3·K−1)

v i :

Group velocity (m·s−1)

λ i :

Mean free path of the charge carriers (electrons or phonons) (m)

λ i,m :

Effective mean free path (m)

λ ii,m :

Mean free path associated with the carrier-to-carrier scattering (m)

λ ib,m :

Mean free path associated with the boundary collisions, m

A C :

Collision cross section between the particle and the charge carrier (m2)

N :

Concentration of particle (m−3)

L :

Distance travelled by the charge carriers (m)

λ ib,m :

Mean free path due to particle addition (m)

σ C :

Effective area of collision per unit volume for each particle (m−1)

K i,m :

Bulk thermal conductivity of the grain (W·m−1·K−1)

λ i,p :

Effective mean free path of the charge carriers inside the particle, (m)

λ ii.p :

Mean free path due to carrier-to-carrier scattering within the particle (m)

c d :

Average distance travelled by the charge carriers inside the particle (m)

K i,p :

Bulk thermal conductivity of the particle (W·m−1·K−1)

ϕ :

Volume fraction

λ :

Sphericity

φ :

Friction angle

References

  1. Paris Agreement, FCCC/CP/2015/L.9/Rev.1. United Nations Framework Convention on Climate Change (UNFCCC) Secretariat (2015). Retrieved 12 December 2015

  2. I. Sarbu, C. Sebarchievici, General review of ground-source heat pump systems for heating and cooling of buildings. Energy Build. 70, 441–454 (2014)

    Article  Google Scholar 

  3. J. Choi, S.R. Lee, D.S. Lee, Numerical simulation of vertical ground exchangers: intermittent operation in unsaturated soil conditions. Comput. Geotech. 38, 949–958 (2011)

    Article  Google Scholar 

  4. G.A. Akrouch, M. Sanchez, J.L. Briaud, Effect of the unsaturated soil condition on the thermal efficiency of energy piles. In: IFCEE, pp. 1618–1627 (2015)

  5. Z.H. Rizvi, D. Shrestha, A.S. Sattari, F. Wuttke, Numerical modelling of effective thermal conductivity for modified geomaterial using Lattice Element Method. Heat Mass Transf. 54, 483–499 (2018)

    Article  ADS  Google Scholar 

  6. D. Shrestha, Z.H. Rizvi, F. Wuttke, Effective thermal conductivity of unsaturated granular geocomposite using Lattice Element Method. Heat Mass Transf. (2018). https://link.springer.com/article/10.1007/s00231-018-02544-3

  7. T. Yun, J. Santamarina, Fundamental study of thermal conduction in dry soils. Grand Matter 10, 197–207 (2008)

    Article  Google Scholar 

  8. D.P.H. Hasselmanand, L.F. Johnson, Compos. Mater. 21, 508 (1987)

    Article  Google Scholar 

  9. C.W. Nan, R. Birringer, D.R. Clarke, H. Gleiter, Effective thermal conductivity of particulate composites with interfacial thermal resistance. J. Appl. Phys. 81, 6692–6699 (1997)

    Article  ADS  Google Scholar 

  10. A. Carminati, A. Kaestner, P. Lehman, H. Flühler, Unsaturated water flow across soil aggregate contacts. Adv. Water Resour. 31, 1221–1232 (2008)

    Article  ADS  Google Scholar 

  11. R. Horn, A. Smucker, Structure formation and its consequences for gas and water transport in unsaturated arable and forest soils. Soil Tillage Res. 82, 5–14 (2005)

    Article  Google Scholar 

  12. S. Venuleo, L. Laloui, D. Terzis, T. Hueckel, M. Hassan, Microbially induced calcite precipitation effect on soil thermal conductivity. Géotech. Lett. 6, 39–44 (2016)

    Article  Google Scholar 

  13. A.J. Phillips, A.B. Cunningham, R. Gerlach et al., Fracture sealing with microbially-induced calcium carbonate precipitation: a field study. Environ. Sci. Technol. 50, 4111–4117 (2016)

    Article  ADS  Google Scholar 

  14. Z.H. Rizvi, K. Sembdner, A.S. Sattari, F. Wuttke Potential of nano material (SiC) for improving the thermal properties of sand. In: Energy Geotechnics, pp. 419–422 (2016)

  15. Z.H. Rizvi, S. Panda, M.A. Khan, F. Wuttke, Improvement of fracture toughness of soil with ZnO tetrapod. Mater. Today Proc. 5, 18325–18331 (2018)

    Article  Google Scholar 

  16. Z.H. Rizvi, N. Nissar, M.J. Giri Prasad, M.A. Khan, S.F. Husain, F. Wuttke, Improvement of uniaxial compression of soil with znotetrapods. Mater. Today Proc. 5, 28180–28185 (2018)

    Article  Google Scholar 

  17. H. Pham, Q.P. Nguyen, Effect of silica nanoparticles on clay swelling and aqueous stability of nanoparticle dispersions. J. Nanopart. Res. 16, 2137 (2014)

    Article  ADS  Google Scholar 

  18. M. Mohammadi, M. Niazian, Investigation of nano-clay effect on geotechnical properties of Rasht clay. J. Adv. Sci. Technol. 3, 37–46 (2013)

    Google Scholar 

  19. M.R. Taha, O.M.E. Taha, Influence of nano-material on the expansive and shrinkage soil behavior. J. Nanopart. Res. 14, 1190 (2012)

    Article  ADS  Google Scholar 

  20. F. Changizi, A. Haddad, Strength properties of soft clay treated with mixture of nano-SiO2 and recycled polyester fiber. J. Rock Mech. Geotech. Eng. 7, 367–378 (2015)

    Article  Google Scholar 

  21. H.L. Luo, D.H. Hsiao, D.F. Lin, C.K. Lin, Sewage sludge ash/cement and nano aluminum oxide. J. Trans. Sci. Technol. 1, 83–100 (2012). https://doi.org/10.1260/2046-0430.1.1.83

    Article  Google Scholar 

  22. F. Changizi, A. Haddad, Effect of nanocomposite on the strength parameters of soil. KSCE J. Civ. Eng. 21, 676–686 (2015)

    Article  Google Scholar 

  23. D.G. Cahill, W.K. Ford, E.G. Kenneth et al., Nanoscale thermal transport. Appl. Phys. Rev. 93, 793–818 (2003)

    Article  ADS  Google Scholar 

  24. L.E. Nielsen, S. Lewis, The thermal and electrical conductivity of two phase systems. Ind. Eng. Chem. Fundam. 13, 17–20 (1994)

    Article  Google Scholar 

  25. P. Zehner, E.U. Schlunder, Thermal conductivity of granular materials at moderate temperatures. Chem. Inorg. Technol. 42, 933–941 (1970). [in German]

    Google Scholar 

  26. R.L. Hamilton, O.K. Crosser, Thermal conductivity of heterogeneous two-component systems. Ind. Eng. Chem. Fundam. 1, 187–191 (1962)

    Article  Google Scholar 

  27. J.C. Maxwell, A Treatise on Electricity and Magnetism, 2nd edn. (Clarendon Press, Oxford, 1881)

    MATH  Google Scholar 

  28. R.G. Yang, G. Chen, M.S. Dresselhaus, Thermal conductivity modeling of core − shell and tubular. Nanowires Nano Lett. 5, 1111–1115 (2005). https://doi.org/10.1021/nl0506498

    Article  ADS  Google Scholar 

  29. D.G. Cahill et al., Nanoscale thermal transport. II. 2003–2012. Appl. Phys. Rev. 1, 011305 (2014)

    Article  ADS  Google Scholar 

  30. A. Minnich, G. Chen, Modified effective medium formulation for the thermal conductivity of nanocomposites. Appl. Phys. Lett. 91, 1 (2007). https://doi.org/10.1063/1.2771040

    Article  Google Scholar 

  31. A. El Moumen, T. Kanit, A. Imad, H. El Minor, Computational thermal conductivity in porous materials using homogenization techniques: numerical and statistical approaches. Comput. Mater. Sci. 97, 148–158 (2015)

    Article  Google Scholar 

  32. Z.H. Rizvi, M.A. Khan, K. Sembdner, S.F. Husain, Numerical modelling of crack wave interaction with BEM. Mater. Today Proc. 5, 28253–28261 (2018)

    Article  Google Scholar 

  33. Z.H. Rizvi, A.S. Sattari, F. Wuttke, Numerical analysis of heat conduction in granular geo-material using lattice element method. In: Energy Geotechnics—Proceedings of the 1st International Conference on Energy Geotechnics, ICEGT 2016, pp. 367–372 (2016)

  34. Z.H. Rizvi, F. Wuttke, A.S. Sattari, Dynamic analysis by lattice element method simulation. In: Proceedings of China-Europe Conference on Geotechnical Engineering, Springer Series in Geomechanics and Geoengineering (2018). https://link.springer.com/chapter/10.1007/978-3-319-97112-4_91

  35. F. Wuttke, A.S. Sattari, Z.H. Rizvi, H.B. Motra, Advanced meso-scale modelling to study the effective thermo-mechanical parameter in solid geomaterial. In: Advances in Laboratory Testing and Modelling of Soils and Shales (ATMSS), Springer Series in Geomechanics and Geoengineering (2017). https://link.springer.com/chapter/10.1007%2F978-3-319-52773-4_9

  36. A.S. Sattari, Z.H. Rizvi, H.B. Motra, F. Wuttke, Meso-scale modeling of heat transport in a heterogeneous cemented geomaterial by lattice element method. Granul, Matter 19, 66 (2017)

    Article  Google Scholar 

  37. M. Nikolic, E. Karavelic, A. Ibrahimbegovic, P. Miscevic, Lattice element models and their peculiarities. Arch. Comput. Methods Eng. 25, 753–784 (2018)

    Article  MathSciNet  Google Scholar 

  38. Z.H. Rizvi, M. Nikolic, F. Wuttke, Lattice element method for simulations of failure in bio-cemented sands. Granul. Matter 21, 18 (2019)

    Article  Google Scholar 

  39. G. Chen, Nanoscale Energy Transport and Conversion: A Parallel Treatment of Electrons, Molecules, Phonons, and Photons (Oxford University Press, Oxford, 2005)

    Google Scholar 

  40. J. Ordonez-Miranda, J.J. Alvarado-Gil, Thermal conductivity of nanocomposites with high volume fractions of particles. Compos. Sci. Technol. 72, 853–857 (2012)

    Article  Google Scholar 

  41. E.H. Kennard, Kinetic Theory of Gases (McGraw-Hill, New York, 1938)

    Google Scholar 

  42. S. Masamune, J.M. Smith, Thermal conductivity of beds of spherical particles. Ind. Eng. Chem. Fundam. 2, 136–143 (1963)

    Article  Google Scholar 

  43. O.T. Farouki, Thermal Properties of Soils (Cold Regions Research and Engineering Laboratory, Hannover, 1981)

    Book  Google Scholar 

  44. H. Zhang, A.J. Minnich, The best nanoparticle size distribution for minimum thermal conductivity. Sci. Rep. 5, 8995

Download references

Acknowledgement

This research project is financially supported by the research Grant 03G0866B (GeoMInt) provided by the Federal Ministry of Education and Research, Germany. We would like to thanks Dr. Y.K. Mishra, Technical Faculty, Kiel University, for providing SEM images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zarghaam Haider Rizvi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rizvi, Z.H., Sembdner, K., Suman, A. et al. Experimental and Numerical Investigation of Thermo-Mechanical Properties for Nano-Geocomposite. Int J Thermophys 40, 54 (2019). https://doi.org/10.1007/s10765-019-2518-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-019-2518-0

Keywords

Navigation