Skip to main content
Log in

Investigation of the Photothermal Excited Microcantilevers Based on Modified Couple Stress Theory

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

In microscale and sub-micron scale, scale effect highlights and the classical continuum mechanics cannot describe microstructure-dependent size effects. So many non-classical theories were put forward. The modified couple stress theory was established by introducing a material parameter to characterize the scale effect. In this paper, the dynamic responses of microcantilever under photothermal excitation are studied using the modified couple stress theory. The microcantilever deflection governing equation was given, and deflections were obtained numerically using relaxation method. Comparison was made between numerical results with that obtained with experimental measurement and showed a good agreement. According to the numerical results, the scale effect becomes remarkable as the ratio of thickness to the material parameter changes from zero to one. Also, the results showed that this ratio has prominent effect on the resonant frequency of microcantilever.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. X.D. Yan, Y.J. Tang, H.F. Ji, Y. Lvov, T. Thundat, Detection of organophosphates using an acetyl cholinesterase (AChE) coated microcantilever. Instrum. Sci. Technol. 32, 175–183 (2004)

    Article  Google Scholar 

  2. S.Q. Li, Z.M. Orona, Z.M. Li, Z.Y. Cheng, Biosensor based on magnetostrictive microcantilever. Appl. Phys. Lett. 88, 073507 (2006)

    Article  ADS  Google Scholar 

  3. C. Karnati, H. Du, H.F. Ji, X. Xu, Y.A. Lvov, P. Mulchandani, W. Chen, Organophosphorus hydrolase multilayer modified microcantilevers for organophosphorus detection. Biosens. Bioelectron. 22, 2636–2642 (2007)

    Article  Google Scholar 

  4. M.K. Ghatkesar, T. Braun, V. Barwich, J. Ramseyer, C. Gerber, M. Hegner, H.P. Lang, Resonating modes of vibrating microcantilevers in liquid. Appl. Phys. Lett. 92, 043106 (2008)

    Article  ADS  Google Scholar 

  5. J.O. Liu, S. Somnath, W.P. King, Heated atomic force microscope cantilever with high resistivity for improved temperature sensitivity. Sens. Actuators A Phys. 201, 141–147 (2013)

    Article  Google Scholar 

  6. K. Lakshmoji, K. Prabakar, S. Tripura, J. Jayapandian, A.K. Tyagi, C.S. Sunda, Origin of bending in uncoated microcantilever-surface topography? Appl. Phys. Lett. 104, 041602 1-4 (2014)

    Article  Google Scholar 

  7. F. Huber, H.P. Lang, J. Zhang, D. Rimoldi, C. Gerber, Nanosensors for cancer detection. Swiss Med. Wkly. 145, w14092 (2015)

    Google Scholar 

  8. J. Tamayo, D. Ramos, J. Mertens, Effect of the adsorbate stiffness on the resonance response of microcantilever sensors. Appl. Phys. Lett. 89, 224104 (2006)

    Article  ADS  Google Scholar 

  9. S. Chaterjee, G. Pohit, A large deflection model for the pull-in analysis of electrostatically actuated microcantilever beams. J. Sound Vib. 322, 969–986 (2009)

    Article  ADS  Google Scholar 

  10. J. Tamayo, J. Ruz, V. Pini, P. Kosaka, M. Calleja, Quantification of the surface stress in microcantilever biosensors: revisiting Stoney’s equation. Nanotechnology 47, 475702 (2012)

    Article  Google Scholar 

  11. J.S. Peng, W. Feng, H.Y. Lin, C.H. Hsueh, S. Lee, Measurements of residual stresses in the Parylene C film/silicon substrate using a microcantilever beam. J. Micromech. Microeng. 23, 095001 1-7 (2013)

    Google Scholar 

  12. U. Andreaus, L. Placidi, G. Rega, Microcantilever dynamics in tapping mode atomic force microscopy via higher eigenmodes analysis. J. Appl. Phys. 113, 224302 1-14 (2013)

    Article  Google Scholar 

  13. I. Dufour, E. Lemaire, B. Caillard, H. Debeda, C. Lucat, S.M. Heinrich, F. Josse, O. Brand, Effect of hydro-dynamic force on microcantilever vibrations; applications to liquid-phase chemical sensing. Sens. Actuators B Chem. 192, 664–672 (2014)

    Article  Google Scholar 

  14. A. Mandelis (ed.), Photoacoustic and Thermal Wave Phenomena in Semiconductors (Elsevier Science Publishing Company, North Holland, 1987)

    Google Scholar 

  15. D.M. Todorović, P.M. Nikolić, A.I. Bojičić, K.T. Radulovic, Thermoelastic and electronic strain contributions to the frequency transmission photoacoustic effect in semiconductors. Phys. Rev. B 55, 15631–15642 (1997)

    Article  ADS  Google Scholar 

  16. D.M. Todorović, P.M. Nikolić, A.I. Bojičić, Photoacoustic frequency transmission technique: electronic deformation mechanism in semiconductor. J. Appl. Phys. 85, 7716–7726 (1999)

    Article  ADS  Google Scholar 

  17. Y.Q. Song, J.T. Bai, Z. Zhao, Y.F. Kang, Study on the vibration of optically excited microcantilevers under fractional-order thermoelastic theory. Int. J. Thermophys. 36, 733–746 (2015)

    Article  ADS  Google Scholar 

  18. D.M. Todorović, P.M. Nikolić, Carrier transport contribution to thermoelastic and electronic deformation in semiconductor, in Semiconductors and Electronic Materials, ed. by A. Mandelis, P. Hess (SPIE Optical Engineering Press, Belingham, 2000), pp. 273–318

    Google Scholar 

  19. D.M. Todorović, Plasma, thermal and elastic waves in semiconductors. Rev. Sci. Instrum. 74, 582–585 (2003)

    Article  ADS  Google Scholar 

  20. Y.Q. Song, B. Cretin, D.M. Todorovic, P. Vairac, Study of laser excited vibration of silicon cantilever. J. Appl. Phys. 104, 104909 (2008)

    Article  ADS  Google Scholar 

  21. Y.Q. Song, B. Cretin, D.M. Todorovic, P. Vairac, Study of photothermal vibrations of semiconductor cantilevers near the resonant frequency. J. Phys. D Appl. Phys. 41, 155106 (2008)

    Article  ADS  Google Scholar 

  22. N.A. Fleck, J.W. Hutchinson, Phenomenological theory for strain gradient effects in plasticity. J. Mech. Phys. Solids 41, 1825–1827 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  23. N.A. Fleck, G.M. Muller, M.F. Ashby, J.W. Hutchinson, Strain gradient plasticity: theory and experiment. Acta Metall. Mater. 42, 475–487 (1994)

    Article  Google Scholar 

  24. J.S. Stolken, A.G. Evans, A microbend test method for measuring the plasticity length scale. J. Acta Mater. 46, 5109–5115 (1998)

    Article  Google Scholar 

  25. D.C.C. Lam, F. Yang, A.C.M. Chong, J. Wang, P. Tong, Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids 51, 1477–1508 (2003)

    Article  ADS  Google Scholar 

  26. A.W. Mcfarland, J.S. Colton, Role of material microstructure in plate stiffness with relevance to microcantilever sensors. J. Micromech. Microeng. 15, 1060–1067 (2005)

    Article  ADS  Google Scholar 

  27. W.T. Koiter, Couple-stresses in the theory of elasticity: I and II. Proc. K. Neder. Akad. Weterschappen Ser. B 67, 17–44 (1964)

    MathSciNet  MATH  Google Scholar 

  28. R.D. Mindlin, H.F. Tiersten, Effects of couple-stresses in linear elasticity. Arch. Ration. Mech. Anal. 11, 415–448 (1962)

    Article  MathSciNet  Google Scholar 

  29. U.B.C.O. Ejike, The plane circular crack problem in the linearized couple-stress theory. Int. J. Eng. Sci. 7, 947–961 (1969)

    Article  Google Scholar 

  30. M. Kishida, K. Sasaki, Torsion of a circular bar with annular groove in couple-stress theory. Int. J. Eng. Sci. 28, 773–781 (1990)

    Article  Google Scholar 

  31. F. Yang, A.C.M. Chong, D.C.C. Lam, P. Tong, Coupled stress based strain gradient theory for elasticity. Int. J. Solid Struct. 39, 2731–2743 (2002)

    Article  Google Scholar 

  32. S.K. Park, X.L. Gao, Bernoulli-Euler beam model based on a modified couple stress theory. J. Micromech. Microeng. 16, 2355–2359 (2006)

    Article  ADS  Google Scholar 

  33. S. Kong, S. Zhou, Z. Nie, K. Wang, The size-dependent natural frequency of Bernoulli–Euler micro-beams. Int. J. Eng. Sci. 46, 427–437 (2008)

    Article  Google Scholar 

  34. L. Wang, Size-dependent vibration characteristics of fluid-conveying microtubes. J. Fluids Struct. 26, 675–684 (2010)

    Article  ADS  Google Scholar 

  35. E. Taati, M. Molaei Najafabadi, Size-dependent generalized thermoelasticity model for Timoshenko microbeams. Acta Mech. 225, 1823–1842 (2014)

    Article  MathSciNet  Google Scholar 

  36. M.H. Kahrobaiyan, M. Asghari, M.T. Ahmadian, A Timoshenko beam element based on the modified couple stress theory. Int. J. Eng. Sci. 79, 75–83 (2014)

    MATH  Google Scholar 

  37. M. Rahaeifard, M.T. Ahmadian, K. Firoozbakhsh, Size-dependent dynamic behavior of microcantilevers under suddenly applied DC voltage. Proc. IMechE C J. Mech. Eng. Sci. 228, 896–906 (2014)

    Article  Google Scholar 

  38. M. Rahaeifard, M.T. Ahmadian, K. Firoozbakhsh, Vibration analysis of electrostatically actuated nonlinear microbridges based on the modified couple stress theory. Appl. Math. Model. 39, 6694–6704 (2015)

    Article  MathSciNet  Google Scholar 

  39. M. Rahaeifard, M.H. Kahrobaiyan, M.T. Ahmadian, K. Firoozbakhsh, Size-dependent pull-in phenomena in nonlinear microbridges. Int. J. Mech. Sci. 54, 306–310 (2012)

    Article  Google Scholar 

  40. M.H. Kahrobaiyan, M. Asghari, M. Rahaeifard, M.T. Ahmadian, Investigation of the size-dependent dynamic characteristics of atomic force microscope microcantilevers based on the modified couple stress theory. Int. J. Eng. Sci. 48, 1985–1994 (2010)

    Article  Google Scholar 

  41. M.H. Kahrobaiyan, M. Rahaeifard, M.T. Ahmadian, A size-dependent yield criterion. Int. J. Eng. Sci. 74, 151–161 (2014)

    Article  Google Scholar 

  42. E. Jomehzadeh, H.R. Noori, A.R. Saidi, The size-dependent vibration analysis of micro-plates based on a modified couple stress theory. Physica E 43, 877–883 (2011)

    Article  ADS  Google Scholar 

  43. Y.G. Wang, W.H. Lin, N. Liu, Nonlinear bending and post-buckling of extensible microscale beams based on modified couple stress theory. Appl. Math. Model. 39, 117–127 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The work was supported by the National Natural Science Foundation of China (Grants Nos. 11672224 and 11272243), the Fundamental Research Funds for the Central Universities and the Scientific Research Program Funded by Shaanxi Provincial Education Department (Program No. 13JS103).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Q. Song.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, Y.Q., Cretin, B., Todorovic, D.M. et al. Investigation of the Photothermal Excited Microcantilevers Based on Modified Couple Stress Theory. Int J Thermophys 40, 49 (2019). https://doi.org/10.1007/s10765-019-2514-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-019-2514-4

Keywords

Navigation