Skip to main content
Log in

Radiative heat transfer in Powell–Eyring nanofluid with peristalsis

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The radiative peristaltic flow of Powell–Eyring nanofluid with temperature-dependent viscosity in an asymmetric channel is considered. Mathematically, nonlinear radiation is accounted through Stefan–Boltzmann law. The governing equations with the appropriate constitutive equations for the non-Newtonian fluid are modeled in the wave frame of reference. Contrary to viscous fluid with linear radiation, these equations are highly nonlinear in nature. Semi-numerical solutions are obtained under well-established large wavelength and small Reynolds number approximations. Important features of fluid flow and heat transfer are discussed graphically for various physical parameters highlighting the influence of nonlinear radiation and variable viscosity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. T.W. Latham, Fluid motion in a peristaltic pump. Master’s thesis, Massachusetts Institute of Technology (1966)

  2. A.H. Shapiro, M.Y. Jaffrin, S.L. Weinberg, Peristaltic pumping with long wavelength at low numbers. J. Fluid Mech. 37, 799–825 (1969)

    Article  ADS  Google Scholar 

  3. Y.C. Fung, C.S. Yih, Peristaltic transport. J. Appl. Mech. 35, 669–675 (1968)

    Article  ADS  Google Scholar 

  4. M. Mishra, A.R. Rao, Peristaltic transport of a Newtonian fluid in an asymmetric channel. Zeitschrift für angewandte Mathematik und Physik 54, 532–550 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  5. S. Srinivas, M. Kothandapani, Peristaltic transport in an asymmetric channel with heat transfer—a note. Int. Commun. Heat Mass Transf. 35, 514–522 (2008)

    Article  Google Scholar 

  6. KhS Mekheimer, Y. Abd elmaboud, Peristaltic flow of a couple stress fluid in an annulus: application of an endoscope. Physica A Stat. Mech. Its Appl. 387, 2403–2415 (2008)

    Article  ADS  Google Scholar 

  7. Q. Hussain, S. Asghar, T. Hayat, A. Alsaedi, Peristaltic transport of hydromagnetic Jeffrey fluid with temperature-dependent viscosity and thermal conductivity. Int. J. Biomath. 9, Article ID: 1650029 (2016)

  8. R.E. Powell, H. Eyring, Mechanisms for the relaxation theory of viscosity. Nature 154, 427–428 (1944)

    Article  ADS  Google Scholar 

  9. S. Noreen, M. Qasim, Peristaltic flow of MHD Eyring-Powell fluid in a channel. Eur. Phys. J. Plus 128, Article ID: 91 (2013)

  10. T. Hayat, A. Tanveer, H. Yasmin, A. Alsaedi, Effects of convective conditions and chemical reaction on peristaltic flow of Eyring–Powell fluid. Appl. Bionics Biomech. 11, 221–233 (2014)

    Article  Google Scholar 

  11. D. Tripathi, O. Bég, A study on peristaltic flow of nanofluids: application in drug delivery systems. Int. J. Heat Mass Transf 70, 61–70 (2014)

    Article  Google Scholar 

  12. S. Hina, M. Mustafa, T. Hayat, A. Alsaedi, Peristaltic transport of Powell–Eyring fluid in a curved channel with heat/mass transfer and wall properties. Int. J. Heat Mass Transf. 101, 156–165 (2016)

    Article  Google Scholar 

  13. J. Buongiorno, Convective transport in nanofluids. J. Heat Transf. 128, 240–250 (2005)

    Article  Google Scholar 

  14. KhS Mekheimer, M.S. Mohamed, T. Elnaqeeb, Metallic nanoparticles influence on blood flow through a stenotic artery. Int. J. Pure Appl. Math. 107, 201–220 (2016)

    Article  Google Scholar 

  15. N. Alvi, T. Latif, Q. Hussain, S. Asghar, Peristalsis of nonconstant viscosity Jeffrey fluid with nanoparticles. Results Phys. 6, 1109–1125 (2016)

    Article  ADS  Google Scholar 

  16. O.U. Mehmood, C. Fetecau, A note on radiative heat transfer to peristaltic flow of Sisko fluid. Appl. Bionics Biomech. 2015, Article ID: 283892 (2015)

  17. M. Kothandapani, J. Prakash, Influence of heat source, thermal radiation, and inclined magnetic field on peristaltic flow of a hyperbolic tangent nanofluid in a tapered asymmetric channel. IEEE Trans. NanoBiosci. 14, 385–392 (2015)

    Article  Google Scholar 

  18. T. Hayat, Z. Nisar, H. Yasmin, A. Alsaedi, Peristaltic transport of nanofluid in a compliant wall channel with convective conditions and thermal radiation. J. Mol. Liq. 220, 448–453 (2016)

    Article  Google Scholar 

  19. K.S. Mekheimer, Y. Abd Elmaboud, Simultaneous effects of variable viscosity and thermal conductivity on peristaltic flow in a vertical asymmetric channel. Can. J. Phys. 92, 1541–1555 (2014)

    Article  ADS  Google Scholar 

  20. T. Latif, N. Alvi, Q. Hussain, S. Asghar, Variable properties of MHD third order fluid with peristalsis. Results Phys. 6, 963–972 (2016)

    Article  ADS  Google Scholar 

  21. S. Rosseland, Astrophysik und atom-theoretische Grundlagen (Springer, Berlin, 1931), pp. 41–44

    Book  Google Scholar 

  22. R. Tanner, Engineering Rheology (Oxford Science Publications, Oxford, 1985)

    MATH  Google Scholar 

  23. M.M. Rashidi, S.A.M. Pour, T. Hayat, S. Obaid, Analytic approximate solutions for steady flow over a rotating disk in porous medium with heat transfer by homotopy analysis method. Comput. Fluids 54, 1–9 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Q. Hussain.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussain, Q., Alvi, N., Latif, T. et al. Radiative heat transfer in Powell–Eyring nanofluid with peristalsis. Int J Thermophys 40, 46 (2019). https://doi.org/10.1007/s10765-019-2510-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-019-2510-8

Keywords

Navigation