Skip to main content
Log in

Carbon Aerogel for Insulation Applications: A Review

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Carbon aerogels, based on resorcinol and formaldehyde precursors and prepared by supercritical drying and high-temperature carbonization, are nanostructured carbons. Carbon aerogels have very low thermal conductivity due to their nanosized pores and particle structures; thus, they are promising as applicants in high-temperature insulation applications. It is well known that the thermal conductivity of carbon aerogels is composed of many components and influenced by many factors, and this review discusses the heat transfer mechanisms of the carbon aerogels. The synthesis procedures of the carbon aerogels were also reviewed. Moreover, the weak mechanical properties of pristine carbon aerogels limit their applications; therefore, it is necessary to strengthen the carbon aerogels and improve their mechanical properties. The reinforced carbon aerogels were introduced and reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. D.W. Schaefer, K.D. Keefer, Phys. Rev. Lett. 56, 2199 (1986)

    ADS  Google Scholar 

  2. A.C. Pierre, G.M. Pajonk, Chem. Rev. 102, 4243 (2002)

    Google Scholar 

  3. N. Husing, U. Schubert, Angew. Chem. Int. Ed. 37, 22 (1998)

    Google Scholar 

  4. S.S. Kistler, Nature 127, 741 (1931)

    ADS  Google Scholar 

  5. X.D. Wang, D. Sun, Y.Y. Duan, Z.J. Hu, J. Non Cryst. Solids 375, 31 (2013)

    ADS  Google Scholar 

  6. G. Zu, J. Shen, L. Zou, Chem. Mater. 25, 4757 (2013)

    Google Scholar 

  7. K. Chen, Z. Bao, A. Du, J. Sol Gel Sci. Technol. 62, 294 (2012)

    Google Scholar 

  8. A. Biedunkiewicz, P. Figiel, M. Krawczyk, U. Gabriel-Polrolniczak, J. Therm. Anal. Calorim. 113, 253 (2013)

    Google Scholar 

  9. B. Alince, Colloid Polym. Sci. 253, 720 (1975)

    Google Scholar 

  10. A. Olli, J. Olli, Carbohydr. Polym. 75, 125 (2009)

    Google Scholar 

  11. J. Wang, M.W. Ellsworth, Ecs Transactions Lett. 19 (2009)

  12. J.T. Korhonen, P. Hiekkataipale, J. Malm, R.H.A. Ras, ACS Nano 5, 1967 (2011)

    Google Scholar 

  13. M.A. Aegerter, N. Leventis, M.M. Koebel, Aerogels Handbook (Springer, Berlin, 2011), p. 215

  14. J.M. Schultz, K.I. Jensen, F.H. Kristiansen, Sol. Energy Mater. Sol. Cells 89, 275 (2005)

    Google Scholar 

  15. O. Nilsson, V. Bock, J. Fricke, in 22nd Thermal Conductivity Conference (Tempe, Arizona, 1993)

  16. R.W. Pekala, J. Mater. Sci. 24, 3221 (1989)

    ADS  Google Scholar 

  17. D. Wu, R. Fu, Z. Sun, Z. Yu, J. Non Cryst. Solids 351, 915 (2005)

    ADS  Google Scholar 

  18. H. Jirglova, A.F. Perez-Cadenas, F.J. Maldonado-Hodar, Langmuir 25, 2461 (2009)

    Google Scholar 

  19. A.L. Peikolainen, F. Perez-Caballero, M. Koel, Oil Shale 25, 348 (2008)

    Google Scholar 

  20. D. Long, Q. Chen, L. Ling, Chem. Commun. 26, 3898 (2009)

    Google Scholar 

  21. W. Li, G. Reichenauer, Carbon 40, 2955 (2002)

    Google Scholar 

  22. D. Long, R. Zhang, L. Ling, J. Colloids Interface. Sci. 331, 40 (2009)

    ADS  Google Scholar 

  23. A.K. Meena, G.K. Mishra, P.N. Nagar, J. Hazard Mater. 122, 161 (2005)

    Google Scholar 

  24. M. Wiener, G. Reichenauer, F. Hemberger, H.P. Ebert, Int. J. Thermophys. 27, 1826 (2006)

    ADS  Google Scholar 

  25. Y. Hanzawa, H. Hatori, N. Yoshizawa, Y. Yamada, Carbon 40, 575 (2002)

    Google Scholar 

  26. J. Feng, Y. Jiang, C. Zhang, Mater. Lett. 65, 3454 (2011)

    Google Scholar 

  27. F. Hemberger, S. Weis, G. Reichenauer, H.P. Ebert, Int. J. Thermophys. 30, 1357 (2009)

    ADS  Google Scholar 

  28. X. Lu, O. Nilsson, J. Fricke, R.W. Pekala, J. Appl. Phys. 73, 581 (1993)

    ADS  Google Scholar 

  29. V. Bock, O. Nilsson, J. Blumm, J. Fricke, J. Non Cryst. Solids 185, 233 (1995)

    ADS  Google Scholar 

  30. M. Wiener, G. Reichenauer, H.P. Ebert, S. Braxmeier, F. Hemberger, Int. J. Thermophys. 30, 1372 (2009)

    ADS  Google Scholar 

  31. G. Reichenauer, U. Heinemann, H.P. Ebert, Colloids Surf. A 300, 204 (2007)

    Google Scholar 

  32. O.J. Lee, K.H. Lee, K.P. Yoo, J. Non Cryst. Solids 298, 287 (2002)

    ADS  Google Scholar 

  33. W.H. Xie, B.M. Zhang, S.Y. Du, Acta Aeronautica Et Astronautica Sinica 27, 650 (2006)

    Google Scholar 

  34. J. Feng, J. Feng, C. Zhang, J. Porous. Mater. 19, 551 (2012)

    Google Scholar 

  35. K. Swimm, G. Reichenauer, S. Vidi, H.P. Ebert, J. Sol Gel Sci. Technol. 9, 1 (2017)

    Google Scholar 

  36. S.A. Al-Muhtaseb, J.A. Ritter, Adv. Mater. 15, 101 (2010)

    Google Scholar 

  37. E.J. Zanto, A.M. And, J.A. Ritter, Ind. Eng. Chem. Res. 41, 3151 (2002)

    Google Scholar 

  38. M. Sprung, J. Am. Chem. Soc. 2, 334 (2002)

    Google Scholar 

  39. S. Mulik, C. Sotiriou-Leventis, N. Leventis, Chem. Mater. 19, 6138 (2007)

    Google Scholar 

  40. H. Tamon, H. Ishizaka, M. Mikami, M. Okazaki, Carbon 35, 791 (1997)

    Google Scholar 

  41. R.W. Pekala, C.T. Alviso, F.M. Kong, S.S. Hulsey, J. Non Cryst. Solids 145, 90 (1992)

    ADS  Google Scholar 

  42. T. Yamamoto, T. Nishimura, T. Suzuki, H. Tamon, J. Non Cryst. Solids 288, 46 (2001)

    ADS  Google Scholar 

  43. H. Tamon, H. Ishizaka, T. Yamamoto, T. Suzuki, Carbon 38, 1099 (2000)

    Google Scholar 

  44. F. Despetis, K. Barral, L. Kocon, J. Phalippou, J. Sol Gel. Sci. Technnol. 19, 829 (2000)

    Google Scholar 

  45. R.W. Pekala, S.T. Mayer, J.F.P.J.L. Kaschmitier, Mrs Proceedings. pp. 1-16. Washington, DC, United States (1994)

  46. H.H. Jung, S.W. Hwang, S.H. Hyun, K.H. Lee, G.T. Kim, Desalination 216, 377 (2007)

    Google Scholar 

  47. D. Wu, R. Fu, S. Zhang, M.S. Dresselhaus, G. Dresselhaus, Carbon 42, 2033 (2004)

    Google Scholar 

  48. U. Fischer, R. Saliger, V. Bock, R. Petricevic, J. Fricke, J. Porous. Mater. 4, 281 (1997)

    Google Scholar 

  49. M. Glora, M. Wiener, R. Petricevic, J. Fricke, J. Non Cryst. Solids 285, 283 (2001)

    ADS  Google Scholar 

  50. R.W. Pekala, J.C. Farmer, C.T. Alviso, J. Non Cryst. Solids 225, 74 (1998)

    ADS  Google Scholar 

  51. J. Wang, M. Glora, R. Petricevic, R. Saliger, J. Fricke, J. Porous. Mater. 8, 159 (2001)

    Google Scholar 

  52. C. Lin, J.A. Ritter, Carbon 38, 849 (2000)

    Google Scholar 

  53. J. Feng, C. Zhang, J. Feng, N. Zhao, ACS. Appl. Mater. Interfaces 3, 4796 (2011)

    Google Scholar 

  54. J. Wang, M. Chen, C. Wang, J. Wang, J. Zheng, Mater. Lett. 68, 446 (2012)

    Google Scholar 

  55. G.P. Wu, J. Yang, C.X. Lu, Mater. Lett. 115, 1 (2014)

    Google Scholar 

  56. C. Liang, G. Sha, S. Guo, J. Non Cryst. Solids 271, 167 (2000)

    ADS  Google Scholar 

  57. D. Wu, R. Fu, Microporous Mesoporous Mater. 96, 115 (2006)

    Google Scholar 

  58. N. Liu, S. Zhang, R. Fu, M.S. Dresselhaus, G. Dresselhaus, Carbon 44, 2430 (2006)

    Google Scholar 

  59. R. Fu, B. Zheng, J. Liu, J. Appl. Polym. Sci. 91, 3060 (2010)

    Google Scholar 

  60. R. Fu, B. Zheng, J. Liu, Adv. Funct. Mater. 13, 558 (2010)

    Google Scholar 

  61. R. Jacobs, Carbon 37, 1199 (1999)

    Google Scholar 

  62. H. Tamon, H. Ishizaka, T. Yamamoto, T. Suzuki, Carbon 37, 2049 (1999)

    Google Scholar 

  63. T. Yamamoto, T. Sugimoto, H. Tamon, Carbon 40, 1345 (2002)

    Google Scholar 

  64. H.K. Wu, X.M. Li, L. Qian, Mater. Sci. Forum 898, 1923 (2017)

    Google Scholar 

  65. X. Zhang, Z. Sui, B. Xu, J. Mater. Chem. 21, 6494 (2011)

    Google Scholar 

  66. H. Sun, Z. Xu, C. Gao, Adv. Mater. 25, 2554 (2013)

    Google Scholar 

  67. J.L. Kaschmitter, S.T. Mayer, R.W. Pekala, Patent 5,789,338, A1 (1998)

  68. N. Job, A. Thery, R. Pirard, Carbon 43, 2481 (2005)

    Google Scholar 

  69. R.W. Pekala, C.T. Alviso, F.M. Kong, S.S. Hulsey, J. Non Cryst. Solids 145, 90 (1992)

    ADS  Google Scholar 

  70. S.T. Mayer, R.W. Pekala, J.L. Kaschmitter, Cheminform. 24, 446 (1997)

    Google Scholar 

  71. I. Najeh, N.B. Mansour, M. Mbarki, A. Houas, J.P. Nogier, L.E. Mir, Solid State Sci. 11, 1747 (2009)

    ADS  Google Scholar 

  72. Y. Zhong, Y. Kong, X. Shen, S. Cui, J. Zhang, Microporous Mesoporous Mater. 172, 182 (2013)

    Google Scholar 

  73. V. Drach, M. Wiener, J. Fricke, Int. J. Thermophys. 28, 1542 (2007)

    ADS  Google Scholar 

  74. J. Yang, S. Li, Y. Luo, L. Yan, F. Wang, Carbon 49, 1542 (2011)

    Google Scholar 

  75. R. Petrivevic, M. Glora, J. Fricke, Carbon 39, 857 (2001)

    Google Scholar 

  76. A.K. Geim, Science 324, 1530 (2009)

    ADS  Google Scholar 

  77. J. Liang, Y. Huang, L. Zhang, Adv. Funct. Mater. 19, 2297 (2010)

    Google Scholar 

  78. H.F. Ju, W.L. Song, L.Z. Fan, J. Mater. Chem. A 2, 10895 (2014)

    Google Scholar 

  79. K. Guo, Z. Hu, X. Chen, RSC Adv. 5, 5197 (2014)

    Google Scholar 

  80. Y. Zhang, W. Fan, Y. Huang, T. Liu, RSC Adv. 5, 1301 (2015)

    Google Scholar 

  81. W. Sun, A. Du, J. Tang, J. Sol Gel Sci. Technol. 80, 68 (2016)

    Google Scholar 

  82. F. Meng, X. Zhang, Y. Luo, J. Mater. Chem. 21, 18537 (2011)

    Google Scholar 

  83. K. Guo, H. Song, L. Zhong, Phys. Chem. Chem. Phys. 16, 11603 (2014)

    Google Scholar 

  84. D. Tasis, N. Tagmatarchis, A. Bianco, M.L. Prato, Chem. Rev. 106, 1105 (2006)

    Google Scholar 

  85. T. Bordjiba, M. Mohamedi, L.H. Dao, J. Power Sources 172, 991 (2007)

    ADS  Google Scholar 

  86. Y. Tao, C.M. Yang, Langmuir 23, 9155 (2007)

    Google Scholar 

  87. J. Biener, M. Stadermann, M. Suss, Energy Environ. Sci. 4, 656 (2011)

    Google Scholar 

  88. M. Ciszewski, Eb. Szatkowska, A. Koszorek, M. Majka, J. Mater. Sci. 1 (2017)

  89. M.A. Worsley, J.H. Satcher, T.F. Baumann, Langmuir 24, 9763 (2008)

    Google Scholar 

  90. M.A. Worsley, T.F. Baumann, Acta Mater. 57, 5131 (2009)

    Google Scholar 

  91. M.C. Gutierrez, F. Rubio, F.D. Monte, Chem. Mater. 22, 2711 (2010)

    Google Scholar 

  92. L.W. Hrubesh, Patent 20,030,134,916, A1 (2003)

  93. H. Cheng, H. Xue, C. Hong, X. Zhang, RSC Adv. 6, 75793 (2016)

    Google Scholar 

Download references

Acknowledgments

The authors sincerely thank the financial supports from the National Natural Science Foundation of China (Nos. 11402003, 51772028), Beijing Natural Science Foundation (2182064) and Young Elite Scientist Sponsorship (YESS) Program by CAST (2015QNRC001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rujie He or Hongshuai Lei.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, L., He, R., Lei, H. et al. Carbon Aerogel for Insulation Applications: A Review. Int J Thermophys 40, 39 (2019). https://doi.org/10.1007/s10765-019-2505-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-019-2505-5

Keywords

Navigation