Skip to main content
Log in

Reinvestigation of the Bulk Modulus for fcc Al using a Helmholtz Energy Approach

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

While extensive studies on the bulk modulus of fcc Al have been conducted, there still exist controversies regarding to the experimental values. In the present work, we adopted a Helmholtz energy approach based on the Morse function, the free electron Fermi gas model, as well as a modified Debye–Grüneisen model ensuring intrinsic thermodynamic relationship satisfied. To identify consistent bulk modulus data, all the model parameters for fcc Al were evaluated by using comprehensively available experimental data on heat capacity, elastic modulus, thermal expansivity, molar volume, etc., over wide temperature and pressure ranges. Reasonable agreements have been achieved in this work without inconsistency among various thermodynamic and thermophysical properties. Our calculated bulk modulus of fcc Al agrees well with the data reported by Kamm and Alers, Gerlich and Fisher, Ho and Ruoff and the assessment done by Wang and Reeber. However, it is impossible to reconcile the parameters to fit the recent data from Raju et al., as well as the results from Tallon and Wolfenden due to the intrinsic thermodynamic constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M.H.G. Jacobs, H.A.J. Oonk, Calphad 24, 133 (2000)

    Article  Google Scholar 

  2. X.G. Lu, M. Selleby, S. Bo, Calphad 29, 68 (2005)

    Article  Google Scholar 

  3. X.G. Lu, M. Selleby, S. Bo, Calphad 29, 49 (2005)

    Article  Google Scholar 

  4. X.G. Lu, M. Selleby, S. Bo, Acta Mater. 53, 2259 (2005)

    Article  Google Scholar 

  5. B. Hallstedt, N. Dupin, M. Hillert et al., Calphad 31, 28 (2007)

    Article  Google Scholar 

  6. X.G. Lu, M. Selleby, S. Bo, Acta Mater. 55, 1215 (2007)

    Article  Google Scholar 

  7. E. Brosh, G. Makov, R.Z. Shneck, Calphad 31, 173 (2007)

    Article  Google Scholar 

  8. X.G. Lu, Q. Chen, Philos. Mag. 89, 2167 (2009)

    Article  ADS  Google Scholar 

  9. C. Kittel, Introduction to Solid State Physics (Wiley, New York, 1996)

    MATH  Google Scholar 

  10. P.M. Sutton, Phys. Rev. 91, 816 (1953)

    Article  ADS  Google Scholar 

  11. C. Zucker, J. Acoust. Soc. Am. 27, 318 (1955)

    Article  ADS  Google Scholar 

  12. R.E. Schmunk, C.S. Smith, J. Phys. Chem. Solids 9, 100 (1959)

    Article  ADS  Google Scholar 

  13. G.N. Kamm, H.V. Bohm, Phys. Rev. 131, 111 (1963)

    Article  ADS  Google Scholar 

  14. G.N. Kamm, G.A. Alers, J. Appl. Phys. 35, 327 (1964)

    Article  ADS  Google Scholar 

  15. J. Vallin, M. Mongy, K. Salama et al., J. Appl. Phys. 35, 1825 (1964)

    Article  ADS  Google Scholar 

  16. J.F. Thomas, Phys. Rev. 181, 955 (1969)

    Article  Google Scholar 

  17. D. Gerlich, E.S. Fisher, J. Phys. Chem. Solids 30, 1197 (1969)

    Article  ADS  Google Scholar 

  18. P.S. Ho, A.L. Ruoff, J. Appl. Phys. 40, 3151 (1969)

    Article  ADS  Google Scholar 

  19. J.L. Tallon, A. Wolfenden, J. Phys. Chem. Solids 40, 831 (1979)

    Article  ADS  Google Scholar 

  20. R.B. Mclellan, T. Ishikawa, J. Phys. Chem. Solids 48, 603 (1987)

    Article  ADS  Google Scholar 

  21. D. Su, Y.L. He, J.Q. Liu, et al., in International Conference on Information Science, Machinery, Materials and Energy, pp. 1840–1850 (2015)

  22. G.V. Sin’Ko, N.A. Smirnov, J. Phys. Condens. Matter 14, 6989 (2002)

    Article  ADS  Google Scholar 

  23. J. Wang, Y. Du, S.L. Shang et al., J. Min. Metall. 50, 37 (2014)

    Article  Google Scholar 

  24. A. Debernardi, M. Alouani, H. Dreyssé, Phys. Rev. B 63, 811 (2001)

    Article  Google Scholar 

  25. S.M. Rassoulinejad-Mousavi, Y. Mao, Y. Zhang, J. Appl. Phys. 119, 244304 (2016)

    Article  ADS  Google Scholar 

  26. S. Raju, K. Sivasubramanian, E. Mohandas, Mater. Lett. 54, 13 (2002)

    Article  Google Scholar 

  27. S. Raju, K. Sivasubramanian, E. Mohandas, Solid State Commun. 122, 671 (2002)

    Article  ADS  Google Scholar 

  28. K. Wang, R.R. Reeber, Philos. Mag. A 80, 1629 (2000)

    Article  ADS  Google Scholar 

  29. L. Kaufman, H. Bernstein, Computer Calculations of Phase Diagrams (Academic, New York, 1970)

    Google Scholar 

  30. N. Saunders, P.A. Miodownik, Calphad: A Comprehensive Guide (Pergamon/Elsevier Science, New York, 1998)

    Google Scholar 

  31. V.L. Moruzzi, J.F. Janak, K. Schwarz, Phys. Rev. B Condens. Matter 37, 790 (1988)

    Article  ADS  Google Scholar 

  32. Y. Wang, R. Ahuja, B. Johansson, Int. J. Quantum Chem. 96, 501 (2004)

    Article  Google Scholar 

  33. J.-O. Andersson, T. Helander, L. Hoglund et al., Calphad 26, 273 (2002)

    Article  Google Scholar 

  34. B. Sundman, B. Jansson, J.-O. Andersson, Calphad 9, 153 (1985)

    Article  Google Scholar 

  35. H.L. Lukas, S.G. Fries, B. Sundman, Computational Thermodynamics: The Calphad Method (Cambridge University Press, Cambridge, 2007)

    Book  Google Scholar 

  36. X.G. Lu, Z. Wang, Y. Cui et al., Chin. Sci. Bull. 59, 1662 (2014)

    Article  Google Scholar 

  37. Y.S. Touloukian, R.K. Kirby, R.E. Taylor et al., Thermal Expansion Metallic Elements and Alloys (Springer Science & Business Media, New York, 1975)

    Book  Google Scholar 

  38. D.E. Gray, American Institute of Physics Handbook, 3rd edn. (McGraw-Hill, New York, 1972)

    MATH  Google Scholar 

  39. S. Nenno, J.W. Kauffman, J. Phys. Soc. Jpn. 15, 220 (1960)

    Article  ADS  Google Scholar 

  40. G. Langelaan, S. Saimoto, Rev. Sci. Instrum. 70, 3413 (1999)

    Article  ADS  Google Scholar 

  41. A.J. Cornish, J. Burke, Rev. Sci. Instrum. 42, 212 (1965)

    Article  Google Scholar 

  42. A. Dewaele, P. Loubeyre, M. Mezouar, Phys. Rev. B 70, 2516 (2004)

    Article  Google Scholar 

  43. Y. Akahama, M. Nishimura, K. Kinoshita et al., Phys. Rev. Lett. 96, 045505 (2006)

    Article  ADS  Google Scholar 

  44. A. Hänström, P. Lazor, J. Alloys Compd. 305, 209 (2000)

    Article  Google Scholar 

  45. K. Syassen, W.B. Holzapfel, J. Appl. Phys. 49, 4427 (1978)

    Article  ADS  Google Scholar 

  46. N.N. Roy, E.G. Steward, Nature 224, 905 (1969)

    Article  ADS  Google Scholar 

  47. S.N. Vaidya, G.C. Kennedy, J. Phys. Chem. Solids 31, 2329 (1970)

    Article  ADS  Google Scholar 

  48. L.C. Ming, D. Xiong, M.H. Manghnani, Phys. B 139, 174 (1986)

    Article  Google Scholar 

  49. P.W. Bridgman: Proceedings of the American Academy of Arts and Sciences. American Academy of Arts & Sciences, pp. 189–234 (1949)

  50. W.J. Nellis, J.A. Moriarty, A.C. Mitchell et al., Phys. Rev. Lett. 60, 1414 (1988)

    Article  ADS  Google Scholar 

  51. R.G. Greene, H. Luo, A.L. Ruoff, Phys. Rev. Lett. 73, 2075 (1994)

    Article  ADS  Google Scholar 

  52. Y. Takahashi, T. Azumi, Y. Sekine, Thermochim. Acta 139, 133 (1989)

    Article  Google Scholar 

  53. D.B. Downie, J.F. Martin, J. Chem. Thermodyn. 12, 779 (1980)

    Article  Google Scholar 

  54. M.W. Chase, J.C.A. Davies, NIST-JANAF Thermochemical Tables, 4th edn. (American Institute of Physics for the National Institute of Standards and Technology, New York, 1998)

    Google Scholar 

  55. D.A. Ditmars, C.A. Plint, R.C. Shukla, Int. J. Thermophys. 6, 499 (1985)

    Article  ADS  Google Scholar 

  56. P.D. Desai, Int. J. Thermophys. 8, 621 (1987)

    Article  ADS  Google Scholar 

  57. W.T. Berg, Phys. Rev. 167, 583 (1968)

    Article  ADS  Google Scholar 

  58. N.E. Phillips, Phys. Rev. 114, 676 (1959)

    Article  ADS  Google Scholar 

  59. R. Stedman, L. Almqvist, G. Nilsson, Phys. Rev. 162, 549 (1967)

    Article  ADS  Google Scholar 

  60. G. Gilat, R.M. Nicklow, Phys. Rev. 143, 487 (1966)

    Article  ADS  Google Scholar 

  61. E.R. Cowley, Can. J. Phys. 52, 1714 (1974)

    Article  ADS  Google Scholar 

  62. J. Ramakrishnan, R. Boehler, G.H. Higgins et al., J. Geophys. Res. 83, 3535 (1978)

    Article  ADS  Google Scholar 

  63. P. McKenna, D.J. Pastine, J. Appl. Phys. 39, 6104 (1968)

    Article  ADS  Google Scholar 

  64. R. Boehler, J. Ramakrishnan, J. Geophys. Res. 85, 6996 (1980)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Grant No. 51271106). The Thermo-Calc software was used to perform the assessments, and TCSAB is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Gang Lu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, XT., Xu, ZF., Zhou, XR. et al. Reinvestigation of the Bulk Modulus for fcc Al using a Helmholtz Energy Approach. Int J Thermophys 40, 42 (2019). https://doi.org/10.1007/s10765-019-2503-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-019-2503-7

Keywords

Navigation