Thermal Property Characterization of a Low Supercooling Degree Binary Mixed Molten Salt for Thermal Energy Storage System


In this paper, LiNO3–NaCl binary mixed molten salt with high phase change enthalpy was selected as phase change materials (PCM). LiNO3 was used as the main phase change material, and NaCl was used as the additional material to change the properties and reduce the supercooling degree of molten salts. LiNO3–NaCl binary mixed molten salts with different mass proportion were prepared by static melting method. The optimum eutectic ratio of the mixed molten salt was obtained through analysis of the experiment results. The influence of NaCl on phase change temperature, decomposition temperature, supercooling degree and phase change latent heat were tested and analyzed. The properties of the phase change materials were characterized by thermogravimetric analyzer and simultaneous differential scanning calorimeter (TGA/DSC), scanning electron microscopy (SEM) and X-ray diffraction (XRD). The phase transition temperature, latent heat and supercooling degree of the binary mixed molten salts showed nonlinear variation with the increase in NaCl mass fraction. When the mass ratio was 88:12 for LiNO3–NaCl, the phase change temperature was the lowest of 222.6 °C, the phase change latent heat was the highest of 389.3 J·g−1 and the supercooling degree was 1.2 °C. The optimum eutectic crystallization degree was achieved. At the same time, the decomposition temperature of the mixed molten salt was increased from 560 °C to 620 °C with the addition of NaCl, which greatly increased the applicable temperature range of LiNO3.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    T.X. Li, R.Z. Wang, J.K. Kiplagat, Y.T. Kang, Energy 50, 454 (2013)

    Article  Google Scholar 

  2. 2.

    D. Zhou, P. Eames, Sol. Energy Mater. Sol. Cells 167, 157 (2017)

    Article  Google Scholar 

  3. 3.

    M.M. Kenisarin, Sol. Energy 107, 553 (2014)

    ADS  Article  Google Scholar 

  4. 4.

    S. Wu, T.X. Li, T. Yan, Y.J. Dai, R.Z. Wang, Int. J. Heat Mass Transf. 102, 733 (2016)

    Article  Google Scholar 

  5. 5.

    X. Xiao, P. Zhang, M. Li, Energy Convers. Manag. 105, 272 (2015)

    Article  Google Scholar 

  6. 6.

    A.F. Elmozughi, L. Solomon, A. Oztekin, S. Neti, M. Guglielmi, G. Brusatin, Int. J. Heat Mass Transf. 78, 1135 (2014)

    Article  Google Scholar 

  7. 7.

    T.X. Li, J.H. Lee, R.Z. Wang, Y.T. Kang, Energy 55, 752 (2013)

    Article  Google Scholar 

  8. 8.

    M.M. Kenisarin, Renew. Sustain. Energy Rev. 14, 955 (2010)

    Article  Google Scholar 

  9. 9.

    G.A. Lane, Sol. Energy Mater. Sol. Cells 27, 135 (1991)

    Article  Google Scholar 

  10. 10.

    R. Pilar, L. Svoboda, P. Honkova, L. Oravova, Thermochim. Acta 546, 81 (2012)

    Article  Google Scholar 

  11. 11.

    P.D. Myers, D.Y. Goswami, Appl. Therm. Eng. 109, 889 (2016)

    Article  Google Scholar 

  12. 12.

    N. Arconada, L. Arribas, B. Lucio, J. González-Aguilar, M. Romero, Sol. Energy 167, 1 (2018)

    ADS  Article  Google Scholar 

  13. 13.

    Y.Y. Yang, J. Luo, S.H. Li, G.L. Song, Y. Liu, G.Y. Tang, Sol. Energy Mater. Sol. Cells 139, 88 (2015)

    Article  Google Scholar 

  14. 14.

    M. Liao, J. Ding, X.L. Wei. Inorganic Chemicals Industry 40, 15 (2008) [in Chinese]

    Google Scholar 

  15. 15.

    A.M. Gasanaliev, B.Y. Gamataeva, Russ. Chem. Rev. 69, 179 (2000)

    ADS  Article  Google Scholar 

  16. 16.

    Q. Peng, X.X. Yang, J. Ding, Appl. Energy 112, 682 (2013)

    Article  Google Scholar 

  17. 17.

    R. Tamme, T. Bauer, J. Buschle, Int. J. Energy Res. 32, 264 (2008)

    Article  Google Scholar 

  18. 18.

    G.Z. Xu, G.H. Leng, C.Y. Yang, Y. Qin, Y.T. Wu, H.S. Chen, L. Cong, Y.L. Ding, Sol. Energy 146, 494 (2017)

    ADS  Article  Google Scholar 

  19. 19.

    Y. Li, P. Li, Q.Z. Zhu, Q.F. Li, Int. J. Thermophys. 37, 103 (2016)

    ADS  Article  Google Scholar 

  20. 20.

    Y. Li, P. Li, Q.Z. Zhu, Y.M. Yu, J. Chin. Ceram. Soc. 46, 624 (2018). [in Chinese]

    Google Scholar 

  21. 21.

    C.Y. Zhao, Z.G. Wu, Sol. Energy Mater. Sol. C. 95, 3341 (2011)

    Article  Google Scholar 

  22. 22.

    L.P. Drouot, M.J. Hillairet, J. Sol. Energy 106, 83 (1984)

    Article  Google Scholar 

  23. 23.

    G.Y. Liu, Dissertation for Master’s Degree (Shanghai University of Electric Power, 2018) [in Chinese]

  24. 24.

    M.G. Broadhurst, J. Chem. Phys. 36, 2578 (1962)

    ADS  Article  Google Scholar 

  25. 25.

    J. Xu, Y. Ma, W. Hu, M. Rehahn, G. Reiter, Nat. Mater. 8, 348 (2009)

    ADS  Article  Google Scholar 

Download references


This research is supported by Shanghai Science and Technology Committee Project (Contract No. 18020501000) and National Natural Science Foundation of China (Contract No. 51576119).

Author information



Corresponding author

Correspondence to Q. Z. Zhu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Wang, C.G., Liu, G.Y. et al. Thermal Property Characterization of a Low Supercooling Degree Binary Mixed Molten Salt for Thermal Energy Storage System. Int J Thermophys 40, 41 (2019).

Download citation


  • LiNO3–NaCl binary phase change material
  • Low supercooling degree
  • Morphological characterizations
  • Thermal characterization