Thermal Property Characterization of a Low Supercooling Degree Binary Mixed Molten Salt for Thermal Energy Storage System

  • Y. Li
  • C. G. Wang
  • G. Y. Liu
  • Q. Z. ZhuEmail author
  • Z. Z. Qiu


In this paper, LiNO3–NaCl binary mixed molten salt with high phase change enthalpy was selected as phase change materials (PCM). LiNO3 was used as the main phase change material, and NaCl was used as the additional material to change the properties and reduce the supercooling degree of molten salts. LiNO3–NaCl binary mixed molten salts with different mass proportion were prepared by static melting method. The optimum eutectic ratio of the mixed molten salt was obtained through analysis of the experiment results. The influence of NaCl on phase change temperature, decomposition temperature, supercooling degree and phase change latent heat were tested and analyzed. The properties of the phase change materials were characterized by thermogravimetric analyzer and simultaneous differential scanning calorimeter (TGA/DSC), scanning electron microscopy (SEM) and X-ray diffraction (XRD). The phase transition temperature, latent heat and supercooling degree of the binary mixed molten salts showed nonlinear variation with the increase in NaCl mass fraction. When the mass ratio was 88:12 for LiNO3–NaCl, the phase change temperature was the lowest of 222.6 °C, the phase change latent heat was the highest of 389.3 J·g−1 and the supercooling degree was 1.2 °C. The optimum eutectic crystallization degree was achieved. At the same time, the decomposition temperature of the mixed molten salt was increased from 560 °C to 620 °C with the addition of NaCl, which greatly increased the applicable temperature range of LiNO3.


LiNO3–NaCl binary phase change material Low supercooling degree Morphological characterizations Thermal characterization 



This research is supported by Shanghai Science and Technology Committee Project (Contract No. 18020501000) and National Natural Science Foundation of China (Contract No. 51576119).


  1. 1.
    T.X. Li, R.Z. Wang, J.K. Kiplagat, Y.T. Kang, Energy 50, 454 (2013)CrossRefGoogle Scholar
  2. 2.
    D. Zhou, P. Eames, Sol. Energy Mater. Sol. Cells 167, 157 (2017)CrossRefGoogle Scholar
  3. 3.
    M.M. Kenisarin, Sol. Energy 107, 553 (2014)ADSCrossRefGoogle Scholar
  4. 4.
    S. Wu, T.X. Li, T. Yan, Y.J. Dai, R.Z. Wang, Int. J. Heat Mass Transf. 102, 733 (2016)CrossRefGoogle Scholar
  5. 5.
    X. Xiao, P. Zhang, M. Li, Energy Convers. Manag. 105, 272 (2015)CrossRefGoogle Scholar
  6. 6.
    A.F. Elmozughi, L. Solomon, A. Oztekin, S. Neti, M. Guglielmi, G. Brusatin, Int. J. Heat Mass Transf. 78, 1135 (2014)CrossRefGoogle Scholar
  7. 7.
    T.X. Li, J.H. Lee, R.Z. Wang, Y.T. Kang, Energy 55, 752 (2013)CrossRefGoogle Scholar
  8. 8.
    M.M. Kenisarin, Renew. Sustain. Energy Rev. 14, 955 (2010)CrossRefGoogle Scholar
  9. 9.
    G.A. Lane, Sol. Energy Mater. Sol. Cells 27, 135 (1991)CrossRefGoogle Scholar
  10. 10.
    R. Pilar, L. Svoboda, P. Honkova, L. Oravova, Thermochim. Acta 546, 81 (2012)CrossRefGoogle Scholar
  11. 11.
    P.D. Myers, D.Y. Goswami, Appl. Therm. Eng. 109, 889 (2016)CrossRefGoogle Scholar
  12. 12.
    N. Arconada, L. Arribas, B. Lucio, J. González-Aguilar, M. Romero, Sol. Energy 167, 1 (2018)ADSCrossRefGoogle Scholar
  13. 13.
    Y.Y. Yang, J. Luo, S.H. Li, G.L. Song, Y. Liu, G.Y. Tang, Sol. Energy Mater. Sol. Cells 139, 88 (2015)CrossRefGoogle Scholar
  14. 14.
    M. Liao, J. Ding, X.L. Wei. Inorganic Chemicals Industry 40, 15 (2008) [in Chinese]Google Scholar
  15. 15.
    A.M. Gasanaliev, B.Y. Gamataeva, Russ. Chem. Rev. 69, 179 (2000)ADSCrossRefGoogle Scholar
  16. 16.
    Q. Peng, X.X. Yang, J. Ding, Appl. Energy 112, 682 (2013)CrossRefGoogle Scholar
  17. 17.
    R. Tamme, T. Bauer, J. Buschle, Int. J. Energy Res. 32, 264 (2008)CrossRefGoogle Scholar
  18. 18.
    G.Z. Xu, G.H. Leng, C.Y. Yang, Y. Qin, Y.T. Wu, H.S. Chen, L. Cong, Y.L. Ding, Sol. Energy 146, 494 (2017)ADSCrossRefGoogle Scholar
  19. 19.
    Y. Li, P. Li, Q.Z. Zhu, Q.F. Li, Int. J. Thermophys. 37, 103 (2016)ADSCrossRefGoogle Scholar
  20. 20.
    Y. Li, P. Li, Q.Z. Zhu, Y.M. Yu, J. Chin. Ceram. Soc. 46, 624 (2018). [in Chinese] Google Scholar
  21. 21.
    C.Y. Zhao, Z.G. Wu, Sol. Energy Mater. Sol. C. 95, 3341 (2011)CrossRefGoogle Scholar
  22. 22.
    L.P. Drouot, M.J. Hillairet, J. Sol. Energy 106, 83 (1984)CrossRefGoogle Scholar
  23. 23.
    G.Y. Liu, Dissertation for Master’s Degree (Shanghai University of Electric Power, 2018) [in Chinese]Google Scholar
  24. 24.
    M.G. Broadhurst, J. Chem. Phys. 36, 2578 (1962)ADSCrossRefGoogle Scholar
  25. 25.
    J. Xu, Y. Ma, W. Hu, M. Rehahn, G. Reiter, Nat. Mater. 8, 348 (2009)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Y. Li
    • 1
  • C. G. Wang
    • 1
  • G. Y. Liu
    • 2
  • Q. Z. Zhu
    • 1
    Email author
  • Z. Z. Qiu
    • 1
  1. 1.College of Energy and Mechanical EngineeringShanghai University of Electric PowerShanghaiChina
  2. 2.Shanghai Zibao Residential Industry Co., LtdShanghaiChina

Personalised recommendations