Thermal and Electrical Conductivity of Liquid Al–Si Alloys

  • Yifan Sun
  • Hiroaki Muta
  • Ken Kurosaki
  • Yuji OhishiEmail author


Aluminum silicon alloys belong to the family of metallic phase change materials that utilizes latent heat to store and release energy. In designing such heat storage systems, knowledge of the thermal conductivity in both the liquid and solid phase is required to determine heat exchange speed. Here, we attempted to evaluate the thermal conductivity of liquid Al–Si alloys both from electrical resistivity and from thermal diffusivity. Electrical resistivity was measured by adapting the van der Pauw method for liquids and is related to thermal conductivity through the Wiedemann–Franz law, but assumptions about the Lorenz number of liquid Al–Si alloys is necessary. We also measured the thermal diffusivity of liquid Al–Si alloys by laser flash to calculate the thermal conductivity. Comparing the thermal conductivity obtained through these two methods, we realized that calculations with the ideal metal’s Lorenz number overestimates the thermal conductivity of liquid Al–Si alloys.


Al–Si alloys Electrical resistivity Laser flash Liquid metals Lorenz number Thermal conductivity van der Pauw 



  1. 1.
    S. Kuravi, J. Trahan, D.Y. Goswami, M.M. Rahman, E.K. Stefanakos, Thermal energy storage technologies and systems for concentrating solar power plants. Prog. Energy Combust. Sci. 39, 285 (2013)CrossRefGoogle Scholar
  2. 2.
    G. Wei, G. Wang, C. Xu, X. Ju, L. Xing, X. Du, Y. Yang, Selection principles and thermophysical properties of high temperature phase change materials for thermal energy storage: A review. Renew. Sustain. Energy Rev. 81, 1771 (2017)CrossRefGoogle Scholar
  3. 3.
    R. Serrano-López, J. Fradera, S. Cuesta-López, Molten salts database for energy applications. Chem. Eng. Process. 73, 87 (2013)CrossRefGoogle Scholar
  4. 4.
    W. Gale, T. Totemeier, Smithells Metals Reference Book. Smithells Metals Reference Book, 8th edn. (Butterworth-Heinemann, Oxford, 2004)Google Scholar
  5. 5.
    P. Maycock, Thermal conductivity of silicon, germanium, III–V compounds and III–V alloys. Solid State Electron. 10, 161 (1967)ADSCrossRefGoogle Scholar
  6. 6.
    Z. Wang, H. Wang, X. Li, D. Wang, Q. Zhang, G. Chen, Z. Ren, Aluminum and silicon based phase change materials for high capacity thermal energy storage. Appl. Therm. Eng. 89, 204 (2015)ADSCrossRefGoogle Scholar
  7. 7.
    R. Brandt, G. Neuer, Electrical resistivity and thermal conductivity of pure aluminum and aluminum alloys up to and above the melting temperature. Int. J. Thermophys. 28, 1429 (2007)ADSCrossRefGoogle Scholar
  8. 8.
    C. Bale, E. Bélisle, P. Chartrand, S. Decterov, G. Eriksson, A. Gheribi, K. Hack, I.H. Jung, Y.B. Kang, J. Melançon, A. Pelton, S. Petersen, C. Robelin, J. Sangster, P. Spencer, M.A.V. Ende, FactSage thermochemical software and databases, 2010–2016. Calphad 54, 35 (2016)CrossRefGoogle Scholar
  9. 9.
    L.J. van der Pauw, A method of measuring specific resistivity and Hall effect on lamellae of arbitrary shape. Philips Tech. Rev. 20, 220 (1958)Google Scholar
  10. 10.
    R. Franz, G. Wiedemann, Ueber die Wärme–Leitungsfähigkeit der Metalle [German]. Ann. Phys. 165, 497 (1853)CrossRefGoogle Scholar
  11. 11.
    C. Kittel, Introduction to Solid State Physics (Wiley, New York, 1976)zbMATHGoogle Scholar
  12. 12.
    T. Nishi, H. Ohta, H. Shibata, Y. Waseda, Thermal diffusivities and conductivities of molten germanium and silicon. Int. J. Thermophys. 24, 1735 (2003)ADSCrossRefGoogle Scholar
  13. 13.
    H. Ohta, Y. Waseda, Measurement of thermal diffusivity of inorganic materials at elevated temperature by laser flash method. High Temp. Mater. Process. 7, 179 (1986)ADSGoogle Scholar
  14. 14.
    T. Nishi, H. Shibata, Y. Waseda, H. Ohta, Thermal conductivities of molten iron, cobalt, and nickel by laser flash method. Metall. Mater. Trans. A 34, 2801 (2003)CrossRefGoogle Scholar
  15. 15.
    T. Nishi, H. Shibata, H. Ohta, Thermal diffusivities and conductivities of molten germanium and silicon. Mater. Trans. 44, 2369 (2003)CrossRefGoogle Scholar
  16. 16.
    J. Schmitz, B. Hallstedt, J. Brillo, I. Egry, M. Schick, Density and thermal expansion of liquid Al–Si alloys. J. Mater. Sci. 47, 3706 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    T. Iida, R.I.L. Guthrie, The Physical Properties of Liquid Metals (Clarendon press, Oxford, 1988)Google Scholar
  18. 18.
    T. Kondo, Y. Ohishi, H. Muta, K. Kurosaki, S. Yamanaka, Thermal conductivity and electrical resistivity of liquid Ag–In alloy. J. Nucl. Sci. Technol. 55, 568 (2018)CrossRefGoogle Scholar
  19. 19.
    N.E. Cusack, The electronic properties of liquid metals. Rep. Prog. Phys. 26, 361 (1963)ADSCrossRefGoogle Scholar
  20. 20.
    M. Pokorny, H.U. Astrom, Temperature dependence of the electrical resistivity of liquid tin between 214 degrees C and 705 degrees C. J. Phys. F Met. Phys. 5, 1327 (1975)ADSCrossRefGoogle Scholar
  21. 21.
    M. Leitner, T. Leitner, A. Schmon, K. Aziz, G. Pottlacher, Thermophysical properties of liquid aluminum. Metall. Mater. Trans. A 48, 3036 (2017)CrossRefGoogle Scholar
  22. 22.
    K.C. Mills, Recommended Values of Thermophysical Properties for Selected Commercial Alloys (Woodhead Publishing Ltd., Cambridge, 2002)CrossRefGoogle Scholar
  23. 23.
    M. Chari, M. Chari, The electronic Lorenz number in some transition metals at high temperatures. J. Phys. Condens. Matter 2, 631 (1990)ADSCrossRefGoogle Scholar
  24. 24.
    A. Grosse, Electrical and thermal conductivity of metallic potassium, over its entire liquid range, i.e., from the melting point to the critical point. J. Inorg. Nucl. Chem. 28, 785 (1996)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Yifan Sun
    • 1
  • Hiroaki Muta
    • 1
  • Ken Kurosaki
    • 1
  • Yuji Ohishi
    • 1
    Email author
  1. 1.Graduate School of EngineeringOsaka UniversityOsakaJapan

Personalised recommendations