Skip to main content
Log in

Enhanced Transient Hot Bridge Method Using a Finite Element Analysis

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

This paper presents a new enhanced measuring procedure to determine the direction-dependent thermal diffusivity of anisotropic materials using the transient hot bridge technique. Two measurements with different sensor orientation are performed to ascertain the thermal diffusivities in the three spatial directions. The analysis of the measurement signals combines an analytical evaluation with a finite-element post-diction of the signal. The measurement uncertainty is assessed to 4 %–10 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. U. Hammerschmidt, V. Meier, New transient hot-bridge sensor to measure thermal conductivity, thermal diffusivity, and volumetric specific heat. Int. J. Thermophys. 27, 840–865 (2006)

    Article  ADS  Google Scholar 

  2. S.E. Gustafsson, E. Karawacki, M.N. Khan, Transient hot-strip method for simultaneously measuring thermal conductivity and thermal diffusivity of solids and fluids. J. Phys. D Appl. Phys. 12, 1411–1421 (1979)

    Article  ADS  Google Scholar 

  3. R. Model, R. Stosch, U. Hammerschmidt, Virtual experiment design for the transient hot-bridge sensor. Int. J. Thermophys. 28, 1447–1460 (2007)

    Article  ADS  Google Scholar 

  4. U. Hammerschmidt, M. Abid, The thermal conductivity of glass-sieves: I liquid saturated frits. Int. J. Thermal Sci. 96, 119–127 (2015)

    Article  Google Scholar 

  5. C. Heinle, Simulationsgestützte Entwicklung von Bauteilen aus wärmeleitenden Kunststoffen (Universität Erlangen-Nürnberg, Diss., 2012)

  6. O. Skrabala, Wärmeleitfähige Kunststoffe: Verarbeitungsinduzierte Eigneschaftsbeeinflussung und deren numerische Vorhersage (Universität Stuttgart, Diss., 2016)

  7. M. Abid, Thermophysical properties of a moist porous material, dissertation (Technical University, Braunschweig, 2012)

  8. Kraft, Gaiser, Stripf, Hesse, Determination of load dependent thermal conductivity of porous adsorbents, in Excerpt from the proceedings of the COMSOL conference Munich (2016)

  9. C. Ullrich, T. Bodmer, D6.1 Metalle und Metalllegierungen, in VDI Gesellschaft: VDI-Wärmeatlas, Wiesbaden (Springer, Berlin Heidelberg, 2006) ISBN 978-3-540-25503-1

  10. R. Model, U. Hammerschmidt, Numerical methods for the determination of thermal properties by means of transient measurements, in Advanced Computational Methods in Heat Transfer, 5th edn., ed. by B. Suden, U. Hammerschmidt (WIT Press, Ashurst, Southampton, 2000), pp. 407–416

    Google Scholar 

  11. X. Li, R. Luo, W. Zhang, H. Liao, Method for measuring thermal contact resistance of graphite thin film materials. Measurement 93, 202–207 (2016)

    Article  Google Scholar 

  12. H.S. Carslaw, J.C. Jaeger, Conduction of Heat in Solids (Clarendon Press, Oxford, 1965)

    MATH  Google Scholar 

  13. C. Hübner, P. B. Kempa, D6.2 Polymere in VDI Gesellschaft: VDI-Wärmeatlas, Wiesbaden (Springer Berlin Heidelberg, 2006) ISBN 978-3-540-25503-1

  14. Joint Committee for Guides in Metrology, JCGM 100: Evaluation of measurement data—guide to the expression of uncertainty in measurement (2008)

  15. S. Lagüela, P. Bison, F. Peron, P. Romagnoni, Thermal conductivity measurements on wood materials with transient plane source technique. Thermochim. Acta 600, 45–51 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the German Federal Ministry of Education and Research, research Grant (13FH009PX5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Gaiser.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaiser, J., Stripf, M. & Henning, F. Enhanced Transient Hot Bridge Method Using a Finite Element Analysis. Int J Thermophys 40, 12 (2019). https://doi.org/10.1007/s10765-018-2476-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-018-2476-y

Keywords

Navigation