Skip to main content
Log in

Investigation on Thermal Conductivity of Steel Fiber Reinforced Concrete Using Mesoscale Modeling

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

A mesoscale model was developed to investigate the effect of steel fiber on the thermal conductivity of steel fiber-reinforced concrete (SFRC). Delaunay triangulation was employed to generate the unstructured mesh for SFRC materials. The model was validated using the existing experimental data. Then, it was used to study how model thickness affected simulation outcomes of thermal conductivity of models with different fiber lengths, by which an appropriate thickness was determined for the later analyses. The validated and optimized model was applied to the study of relationships between thermal conductivity and factors such as fiber content, fiber aspect ratio and different parts of an SFRC block by conducting steady-state heat analyses with the finite element analysis software ANSYS. The simulation results reveal that adding steel fiber increases thermal conductivity considerably, while fiber aspect ratio only has an insignificant effect. Besides, the presence of steel fibers has an obvious impact on the distribution of temperature and heat flux vector of the SFRC blocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Y. Su, J. Li, C. Wu, P. Wu, Z.-X. Li, Constr. Build. Mater. 114, 708 (2016). https://doi.org/10.1016/j.conbuildmat.2016.04.007

    Article  Google Scholar 

  2. T.D. Hrynyk, F.J. Vecchio, ACI Struct. J. 111, 1213 (2014). https://doi.org/10.14359/51686923

    Article  Google Scholar 

  3. R. Sovják, T. Vavřiník, J. Zatloukal, P. Máca, T. Mičunek, M. Frydrýn, Int. J. Impact Eng. 76, 166 (2015). https://doi.org/10.1016/j.ijimpeng.2014.10.002

    Article  Google Scholar 

  4. N. Banthia, S. Mindess, J.-F. Trottier, ACI Mater. J. 93, 472 (1996)

    Google Scholar 

  5. V. Bindiganavile, N. Banthia, B. Aarup, ACI Mater. J. 99, 543 (2002)

    Google Scholar 

  6. C. Wu, D.J. Oehlers, M. Rebentrost, J. Leach, A.S. Whittaker, Eng. Struct. 31, 2060 (2009). https://doi.org/10.1016/j.engstruct.2009.03.020

    Article  Google Scholar 

  7. J. Li, C. Wu, H. Hao, Mater. Des. 82, 64 (2015). https://doi.org/10.1016/j.matdes.2015.05.045

    Article  Google Scholar 

  8. Y.N. Chan, X. Luo, W. Sun, Cem. Concr. Res. 30, 247 (2000)

    Article  Google Scholar 

  9. W. Khaliq, V. Kodur, Cem. Concr. Res. 41, 1112 (2011). https://doi.org/10.1016/j.cemconres.2011.06.012

    Article  Google Scholar 

  10. A. Lau, M. Anson, Cem. Concr. Res. 36, 1698 (2006). https://doi.org/10.1016/j.cemconres.2006.03.024

    Article  Google Scholar 

  11. G.-F. Peng, W.-W. Yang, J. Zhao, Y.-F. Liu, S.-H. Bian, L.-H. Zhao, Cem. Concr. Res. 36, 723 (2006). https://doi.org/10.1016/j.cemconres.2005.12.014

    Article  Google Scholar 

  12. F. Aslani, B. Samali, Fire Technol. 50, 1249 (2013). https://doi.org/10.1007/s10694-012-0322-5

    Article  Google Scholar 

  13. F. Aslani, B. Samali, Fire Technol. 50, 1229 (2013). https://doi.org/10.1007/s10694-013-0332-y

    Article  Google Scholar 

  14. W.M. Lin, T.D. Lin, L.J. Powers-Couche, ACI Mater. J. 93, 199 (1996)

    Google Scholar 

  15. V. Corinaldesi, G. Moriconi, Constr. Build. Mater. 26, 289 (2012). https://doi.org/10.1016/j.conbuildmat.2011.06.023

    Article  Google Scholar 

  16. V. Kodur, W. Khaliq, J. Mater. Civ. Eng. 23, 793 (2011). https://doi.org/10.1061/(asce)mt.1943-5533.0000225

    Article  Google Scholar 

  17. V.K.R. Kodur, M.A. Sultan, J. Mater. Civ. Eng. 15, 101 (2003). https://doi.org/10.1061//asce/0899-1561/2003/15:2/101

    Article  Google Scholar 

  18. T.T. Lie, V.K.R. Kodur, (Institute for Research in Construction, National Research Council Canada, Canada, 1995)

  19. R. Gül, E. Okuyucu, İ. Türkmen, A.C. Aydin, Mater. Lett. 61, 5145 (2007). https://doi.org/10.1016/j.matlet.2007.04.050

    Article  Google Scholar 

  20. J. Sun, L. Fang, Int. J. Heat Mass Transf. 52, 5598 (2009). https://doi.org/10.1016/j.ijheatmasstransfer.2009.06.008

    Article  Google Scholar 

  21. S. Marfia, E. Sacco, Int. J. Numer. Methods Eng. 57, 1577 (2003). https://doi.org/10.1002/nme.732

    Article  Google Scholar 

  22. J. Oliver, D.F. Mora, A.E. Huespe, R. Weyler, Int. J. Solids Struct. 49, 2990 (2012). https://doi.org/10.1016/j.ijsolstr.2012.05.032

    Article  Google Scholar 

  23. Z. Xu, H. Hao, H.N. Li, Constr. Build. Mater. 26, 274 (2012). https://doi.org/10.1016/j.conbuildmat.2011.06.022

    Article  Google Scholar 

  24. E. Gal, R. Kryvoruk, Comput. Struct. 89, 921 (2011). https://doi.org/10.1016/j.compstruc.2011.02.006

    Article  Google Scholar 

  25. V.M.C.F. Cunha, J.A.O. Barros, J.M. Sena-Cruz, Comput. Struct. 94–95, 22 (2012). https://doi.org/10.1016/j.compstruc.2011.12.005

    Article  Google Scholar 

  26. A. Pros, P. Diez, C. Molins, Int. J. Numer. Methods Eng. 90, 65 (2012). https://doi.org/10.1002/nme.3312

    Article  Google Scholar 

  27. Q. Fang, J. Zhang, Constr. Build. Mater. 44, 118 (2013). https://doi.org/10.1016/j.conbuildmat.2013.02.067

    Article  Google Scholar 

  28. S. Häfner, S. Eckardt, T. Luther, C. Könke, Comput. Struct. 84, 450 (2006). https://doi.org/10.1016/j.compstruc.2005.10.003

    Article  Google Scholar 

  29. Z.M. Wang, A.K.H. Kwan, H.C. Chan, Comput. Struct. 70, 533 (1999)

    Article  Google Scholar 

  30. Y. Su, J. Li, C. Wu, P. Wu, M. Tao, X. Li, Mater. Des. 116, 340 (2017). https://doi.org/10.1016/j.matdes.2016.12.027

    Article  Google Scholar 

  31. B. Nagy, S.G. Nehme, D. Szagri, Energy Proc. 78, 2742 (2015). https://doi.org/10.1016/j.egypro.2015.11.616

    Article  Google Scholar 

  32. X. Liang, C. Wu, Constr. Build. Mater. 165, 187 (2018). https://doi.org/10.1016/j.conbuildmat.2018.01.028

    Article  Google Scholar 

  33. B. Miloud, Asian J. Civ. Eng. (Build. Hous.) 6, 317 (2005)

    Google Scholar 

  34. B. Nagy, D. Szagri, Appl. Mech. Mater. 824, 579 (2016). https://doi.org/10.4028/www.scientific.net/AMM.824.579

    Article  Google Scholar 

  35. A. Tandiroglu, Int. J. Thermophys. 31, 1195 (2010). https://doi.org/10.1007/s10765-010-0826-5

    Article  ADS  Google Scholar 

  36. E. Ganjian, in Department of Civil Engineering, (The University of Leeds, 1990)

  37. H.-Q. Jin, X.-L. Yao, L.-W. Fan, X. Xu, Z.-T. Yu, Int. J. Heat Mass Transf. 92, 589 (2016). https://doi.org/10.1016/j.ijheatmasstransfer.2015.08.103

    Article  Google Scholar 

  38. Y. Liu, C. Ma, D. Wang, Y. Wang, J. Liu, Int. J. Thermophys. 37 (2016). https://doi.org/10.1007/s10765-016-2062-0

  39. C. Bonacina, M. Campanale, L. Moro, Int. J. Thermophys. 24, 1407 (2003)

    Article  Google Scholar 

  40. Eurocode, in EN 1992-1-2 Eurocode 2: Design of Concrete Structures (European Committee for Standardization (CEN), Brussels, 2004)

  41. Eurocode, in EN 1993-1-2 Eurocode 3: Design of Steel Structures (European Committee for Standardization (CEN), Brussels, 2005)

  42. J. Zhang, Z. Liu, W. Liu, Sichuan Build. Sci. 33, 143 (2007)

    Google Scholar 

  43. Y. Qiu, J. Liang, Plast. Technol. 37, 38 (2009). https://doi.org/10.15925/j.cnki.issn1005-3360.2009.08.006

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support of Australian Research Council under the grant DP160104661 and the Australian Government Research Training Program Scholarship.

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also form part of an ongoing study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangwei Liang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, X., Wu, C. Investigation on Thermal Conductivity of Steel Fiber Reinforced Concrete Using Mesoscale Modeling. Int J Thermophys 39, 142 (2018). https://doi.org/10.1007/s10765-018-2465-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-018-2465-1

Keywords

Navigation