Skip to main content
Log in

Investigation on Heat Transfer Properties of Supercritical Water in a Rock Fracture for Enhanced Geothermal Systems

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Supercritical water (SCW) has shown promise as a working fluid to extract heat from hot dry rock (HDR); however, fundamental research on its heat transfer characteristics in HDR fractures is still required. A 2D heat transfer model that considers the variable thermophysical properties was updated to numerically investigate the effects of mass flow rate, thermal reservoir temperature, and fracture aperture size on the heat transfer characteristics of SCW flow through a single HDR fracture. The heat transfer performance of SCW and supercritical CO2 (scCO2) was compared under the same conditions. The results indicate that the heat transmission performance of SCW is superior to scCO2 at high temperature and high pressure. It is essential to synthesize the thermal reservoir temperature and pressure, site conditions, and heat transmission fluids during HDR development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Z. Feng, Y. Zhao, A. Zhou, N. Zhang, Renew. Energy 39, 490 (2012)

    Article  Google Scholar 

  2. D. Kaspereit, M. Mann, S. Sanyal, B. Rickard, W. Osborn, J. Hulen, GRC Trans. 40, 11 (2016)

    Google Scholar 

  3. O. Kato, N. Doi, Y. Sakagawa, T. Uchida, Geothermics 27, 609 (1998)

    Article  Google Scholar 

  4. G. Bertini, A. Giovannoni, G.C. Stefani, Deep Exploration in Larderello Field: Sasso 22 Drilling Venture[M]//Advances in European Geothermal Research (Springer, Netherlands, 1980), pp. 303–311

    Google Scholar 

  5. F. Batini, G. Bertini, A. Bottai, P. Burgassi, G. Cappetti, G. Gianelli, M. Puxeddu, in European Geothermal Update: Proceedings of the 3rd International Seminar on the Results of EC Geothermal Energy Research, pp. 341–353 (1983)

  6. G. Friðleifsson, W. Elders, A. Albertsson, Geothermics 49, 2 (2014)

    Article  Google Scholar 

  7. W. Elders, G. Izquierdo-Montalvo, A. Aragón-Aguilar, R. Tovar-Aguado, M. Flores-Armenta, GRC Trans. 38, 497 (2014)

    Google Scholar 

  8. P. Dobson, H. Asanuma, E. Huenges, F. Poletto, T. Reinsch, B. Sanjuan, in Proceedings, 41st Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, California, SGP-TR-212, February 13–15 (2017)

  9. C. Lu, G.L. Wang, Sci. Technol. Rev. 33, 13–21 (2015). [in Chinese]

    Google Scholar 

  10. Ó. Einarsson, T. Johannesson, A. Albertsson, G. Thorolfsson, G.O. Fridleifsson, in Proceedings World Geothermal Congress, pp. 19–25 (2015)

  11. M. Bazargan, D. Fraser, V. Chatoorgan, J. Heat Transf. 127, 897 (2005)

    Article  Google Scholar 

  12. X. Cheng, B. Kuang, Y. Yang, Nucl. Eng. Des. 237, 240 (2007)

    Article  Google Scholar 

  13. H. Wang, W. Wang, Q. Bi, L. Wang, J. Supercrit. Fluid. 100, 15 (2015)

    Article  Google Scholar 

  14. W. Wang, B. Zhang, J. Lei, X. Zhu, G. Chen, Atomic Energy Sci. Technol. 50, 1193 (2016). [in Chinese]

    Google Scholar 

  15. N. Dickinson, C. Welch, Trans. Am. Soc. Mech. Eng. 80, 745–751 (1958)

    Google Scholar 

  16. H. Swenson, J. Carver, C.D. Kakarala, J. Heat Transf. 87, 477 (1965)

    Article  Google Scholar 

  17. K. Yamagata, K. Nishikawa, S. Hasegawa, T. Fujii, S. Yoshida, Int. J. Heat Mass Transf. 15, 2575–2593 (1972)

    Article  Google Scholar 

  18. S. Scott, T. Driesner, P. Weis, Geothermics 62, 33 (2016)

    Article  Google Scholar 

  19. W.J. Cao, J.L. Chen, F.M. Jiang, J. Jilin, Univ. Earth Sci. Edit. 45(4), 1180–1188 (2015). [in Chinese]

    Google Scholar 

  20. B. Bai, Y.Y. He, X.C. Li, J. Li, X.X. Huang, J.L. Zhu, Appl. Therm. Eng. 116, 79 (2017)

    Article  ADS  Google Scholar 

  21. Y.Y. He, B. Bai, X.C. Li, Int. J. Thermophys. 38, 170 (2017)

    Article  ADS  Google Scholar 

  22. B. Bai, Y. He, X. Li, Geothermics 75, 40 (2018)

    Article  Google Scholar 

  23. B. Cui, Chongqing Univ. Doctoral dissertation (2014). [in Chinese]

  24. E.W. Lemmon, M.L. Huber, M.O. Mclinden, NIST NSRDS (2010)

  25. B. Bai, Y.Y. He, X.C. Li, S.B. Hu, X.X. Huang, J. Li, J.L. Zhu, Environ. Earth Sci. 75, 1460 (2016)

    Article  Google Scholar 

  26. Y.Y. He, B. Bai, S.B. Hu, X.C. Li, Comput. Geotech. 80, 312 (2016)

    Article  Google Scholar 

  27. D.W. Brown, in Proceedings, 21th Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, California, January 24–26, (2000)

  28. K. Pruess, M. Azaroual, in Proceedings, 31th Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, California, January 30–February 1 (2006)

Download references

Acknowledgements

The authors gratefully acknowledge support for this work from the National Natural Science Foundation of China (Grant No. 41672252) and the International Science & Technology Cooperation Program of China (S2016G9005) under the cooperation framework of the US–China Clean Energy Research Center (CERC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing Bai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Y., Bai, B. & Li, X. Investigation on Heat Transfer Properties of Supercritical Water in a Rock Fracture for Enhanced Geothermal Systems. Int J Thermophys 39, 136 (2018). https://doi.org/10.1007/s10765-018-2455-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-018-2455-3

Keywords

Navigation