Skip to main content

Innovative Design of a Thermal Battery: Influence of Carbon Nanotubes Concentration on Thermal Storage Characteristics

Abstract

Innovative design of a thermal battery resembling the solar thermal receiver is introduced. The fully connected aluminum meshes and the phase change material (NaCO3) with the presence of multiwall carbon nanotubes (MWCNT) are used as the thermal energy storing medium in the thermal battery. The aluminum meshes behave like heat carriers and increase heat diffusion rates, while the use of MWCNT in the phase change material enhances the thermal conductivity of the thermal energy storing medium. The flow field, temperature rise, and liquid fraction are simulated numerically in the thermal battery using the finite element code for various concentrations of MWCNT. The findings revealed that the aluminum meshes improve the thermal conduction in the energy storing medium. Temperature increases locally in the storing medium and disturbs the uniform-like temperature distribution inside the thermal battery when only phase change material is used. The presence of MWCNT enhances the thermal conductivity and minimizes the excessive temperature rise inside the storing medium. In addition, the mixture of phase change material and MWCNT provides almost steady rate of melting inside the thermal battery; however, increasing MWCNT concentration > 6 % in the phase change material does not significantly shorten the total melting duration of the energy storing medium.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Abbreviations

\( A_{mush} \) :

Mushy zone constant (–)

\( c \) :

Computational constant (–)

\( c_{p} \) :

Specific heat (J·kg−1·K−1)

\( g \) :

Gravitational acceleration (m·s−2)

\( h \) :

Sensible enthalpy (J·kg−1)

\( h_{ref} \) :

Reference enthalpy (J·kg−1)

\( H \) :

Total enthalpy (J·kg−1)

\( \Delta H \) :

Latent enthalpy (J·kg−1)

\( k \) :

Thermal conductivity (W·m−1·K−1)

\( S \) :

Source term (W·m−3)

\( T \) :

Local temperature (K)

\( T_{in} \) :

Initial temperature (K)

\( T_{liquidus} \) :

Liquids temperature (K)

\( T_{solidus} \) :

Solidus temperature (K)

\( T_{\text{max} } \) :

Maximum temperature (K)

\( T_{\text{min} } \) :

Minimum temperature (K)

\( \Delta T_{\text{max} } \) :

(\( \varvec{T}_{{\varvec{max}}} - \varvec{T}_{\text{min} } \)) temperature difference (K)

\( T_{ref} \) :

Reference temperature (K)

\( \Delta T \) :

(\( T - T_{in} \)) temperature difference (K)

\( T_{\infty } \) :

Fluid inside temperature (K)

\( u \) :

Velocity along the x-axis (m·s−1)

\( v \) :

Velocity along the y-axis (m·s−1)

\( \overrightarrow {V} \) :

Velocity vector (m·s−1)

\( \beta \) :

Coefficient of thermal expansion (1/K)

\( \gamma \) :

Liquid fraction (–)

\( \rho \) :

Density (kg·m−3)

\( \mu \) :

Viscosity (Ns·m−2)

\( \varphi \) :

\( \left( {\frac{{\varvec{T} - \varvec{T}_{{\varvec{in}}} }}{{\varvec{T}_{{\varvec{max}}} - \varvec{T}_{{\varvec{in}}} }}} \right) \) Temperature parameter (–)

ψ :

Variable used in the computation

References

  1. 1.

    T. Li, J. Xu, T. Yan, R. Wang, Energy 107, 347 (2016)

    Article  Google Scholar 

  2. 2.

    Q. Wang, Z. Rao, Y. Huo, S. Wang, Int. J. Therm. Sci. 102, 9 (2016)

    Article  Google Scholar 

  3. 3.

    T. Bauer, D. Laing, R. Tamme, Int. J. Thermophys. 33, 91 (2012)

    ADS  Article  Google Scholar 

  4. 4.

    S. Shuja, B. Yilbas, N. Javani, S. Ahmed, Appl. Therm. Eng. 98, 646 (2016)

    Article  Google Scholar 

  5. 5.

    S. Shuja, B. Yilbas, Int. J. Thermophys. 36, 2985 (2015)

    ADS  Article  Google Scholar 

  6. 6.

    F. Yavari, H.R. Fard, K. Pashayi, M.A. Rafiee, A. Zamiri, Z. Yu, R. Ozisik, T. Borca-Tasciuc, N. Koratkar, J. Phys. Chem. C 115, 8753 (2011)

    Article  Google Scholar 

  7. 7.

    N. Sun, Z. Xiao, J. Mater. Sci. 51, 8550 (2016)

    ADS  Article  Google Scholar 

  8. 8.

    S.-H. Lee, T.J. Choi, S.P. Jang, Energy 115, 404 (2016)

    Article  Google Scholar 

  9. 9.

    P. Wang, D. Liu, C. Xu, L. Xia, L. Zhou, Renewable Energy 99, 663 (2016)

    Article  Google Scholar 

  10. 10.

    X. Chen, X.-L. Xia, H. Liu, Y. Li, B. Liu, Energy Convers. Manag. 114, 20 (2016)

    Article  Google Scholar 

  11. 11.

    J. Zhu, K. Wang, G. Li, H. Wu, Z. Jiang, F. Lin, Y. Li, Appl. Therm. Eng. 104, 212 (2016)

    Article  Google Scholar 

  12. 12.

    H. Jin, G. Lin, L. Bai, A. Zeiny, D. Wen, Nano Energy 28, 397 (2016)

    Article  Google Scholar 

  13. 13.

    H. von Storch, H. Stadler, M. Roeb, B. Hoffschmidt, Appl. Therm. Eng. 87, 297 (2015)

    Article  Google Scholar 

  14. 14.

    X. Chen, X.-L. Xia, X.-L. Meng, X.-H. Dong, Energy Convers. Manag. 97, 282 (2015)

    Article  Google Scholar 

  15. 15.

    D. Patidar, S. Tiwari, P. Sharma, L. Chandra, R. Shekhar, Energy Procedia 69, 506 (2015)

    Article  Google Scholar 

  16. 16.

    A. Cardellini, M. Fasano, E. Chiavazzo, P. Asinari, Energy Procedia 91, 3 (2016)

    Article  Google Scholar 

  17. 17.

    X. Chen, X.-L. Xia, X.-H. Dong, G.-L. Dai, Energy Convers. Manag. 105, 562 (2015)

    Article  Google Scholar 

  18. 18.

    B. Coelho, S. Varga, A. Oliveira, A. Mendes, Renewable Energy 63, 392 (2014)

    Article  Google Scholar 

  19. 19.

    M. Sarker, M. Saha, M.S. Rahman, R. Beg, Renewable Energy 96, 850 (2016)

    Article  Google Scholar 

  20. 20.

    Z. Wu, Z. Wang, Sol. Energy 89, 122 (2013)

    ADS  Article  Google Scholar 

  21. 21.

    A. Veeraragavan, A. Lenert, B. Yilbas, S. Al-Dini, E.N. Wang, Int. J. Heat Mass Transf. 55, 556 (2012)

    Article  Google Scholar 

  22. 22.

    T. Li, R. Wang, T. Yan, Energy 84, 745 (2015)

    Article  Google Scholar 

  23. 23.

    M.K. Anwar, B. Yilbas, S. Shuja, Appl. Energy 175, 16 (2016)

    Article  Google Scholar 

  24. 24.

    B. Yilbas, M.K. Anwar, S. Shuja, Numer. Heat Transf. Part A Appl. 69, 1297 (2016)

    ADS  Article  Google Scholar 

  25. 25.

    http://www.nrel.gov/csp/troughnet/pdfs/lupfert_receiver_thermal_prop.pdf (2017)

  26. 26.

    Z. Huang, A. Nakayama, K. Yang, C. Yang, W. Liu, Int. J. Heat Mass Transf. 53, 1164 (2010)

    Article  Google Scholar 

  27. 27.

    http://www.ansys.com/Products/Simulation+Technology/Fluid+Dynamics/Fluid+Dynamics+Products/ANSYS+Fluent (2017)

  28. 28.

    R. Sabbah, M.M. Farid, S. Al-Hallaj, Appl. Therm. Eng. 29, 445 (2009)

    Article  Google Scholar 

  29. 29.

    V. Vand, Nature 155, 364 (1945)

    ADS  Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the KFUPM-funded project RG171004 via support from the Deanship of Scientific Research at King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia, for this work.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Bekir S. Yilbas.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yilbas, B.S., Anwar, M.K. & Al-Sharafi, A. Innovative Design of a Thermal Battery: Influence of Carbon Nanotubes Concentration on Thermal Storage Characteristics. Int J Thermophys 39, 112 (2018). https://doi.org/10.1007/s10765-018-2437-5

Download citation

Keywords

  • Carbon nanotubes
  • Concentrated solar receiver
  • Phase change material
  • Thermal battery