Skip to main content
Log in

The Simplified Analytical Models for Evaluating the Heat Transfer Performance of High-Porosity Metal Foams

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The accurate evaluation of the specific surface area and the effective thermal conductivity (ETC) of high-porosity metal foams is an important prerequisite to study the mechanism of heat transfer enhancement. In this paper, the tetrakaidecahedron, concave triangular prism and equivalent tetrahedron were used to develop the geometry shapes of cell, ligament and node, respectively. The calculation model of the specific surface area characterized by porosity and pore density (PPI) was deduced by considering the shape characteristics. Based on the angle between the two-dimensional plane skeleton layer and the heat flow direction, the ETC analytical calculation model characterized by only the porosity in the three-dimensional space was deduced. Without any other fitting or experimental empirical parameters, these two models are only related to porosity and PPI, which are the most readily available parameters for the metal foams. The results of these models are consistent with the experimental and empirical data in other literature, indicating that these models are both versatile and accurate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

S v :

Specific surface area (m−1)

φ :

Porosity

\( d_{s} \) :

Ligament thickness \( \left( {\text{m}} \right) \)

\( d_{w} \) :

Cell pore diameter \( \left( {\text{m}} \right) \)

\( l \) :

Length of the ligament \( \left( {\text{m}} \right) \)

\( a_{1} \) :

Parameter that affects the shape of the ligament cross section

\( a_{2} \) :

Height of the pyramid \( \left( {\text{m}} \right) \)

\( a_{3} \) :

Parameter that controls the shape of the ligament along the axial direction

\( V \) :

Volume \( \left( {{\text{m}}^{3} } \right) \)

\( S \) :

Surface area \( \left( {{\text{m}}^{2} } \right) \)

\( d_{r} \) :

Inscribed circle diameter of cell \( \left( {\text{m}} \right) \)

\( k \) :

Thermal conductivity \( \left( {{\text{W}} \cdot {\text{m}}^{ - 1} \cdot {\text{K}}^{ - 1} } \right) \)

PPI:

Pore number per inch

\( \Delta T \) :

Temperature difference \( \left( {\text{K}} \right) \)

\( Q \) :

Heat \( \left( {\text{J}} \right) \)

A, B, C:

Serial number of plane skeleton layer

\( H \) :

Height of cell \( \left( {\text{m}} \right) \)

\( A_{l} \) :

Cross-sectional area of ligament \( \left( {{\text{m}}^{2} } \right) \)

\( A_{b} \) :

Bottom area of cell \( \left( {{\text{m}}^{2} } \right) \)

λ :

Parameter, \( \lambda = a_{2} /l \)

α :

Angle

l :

Ligament

n :

Node

cell :

Cell

foam :

Metal foams

max :

Maximum

min :

Minimum

s :

Solid phase

f :

Fluid phase

hex :

Hexahedron

e :

Effective

t :

Total

p :

Plane skeleton layer

References

  1. P.S. Liu, Philos. Mag. Lett. 90, 447–453 (2010)

    Article  ADS  Google Scholar 

  2. M. Lacroix, P. Nguyen, D. Schweich, C.P. Huu, S. Savin-Poncet, D. Edouard, Chem. Eng. Sci. 62, 3259–3267 (2007)

    Article  Google Scholar 

  3. A. Inayat, H. Freund, T. Zeiser, Chem. Eng. Sci. 66, 1179–1188 (2011)

    Article  Google Scholar 

  4. F.C. Buciuman, B. Kraushaarczarnetzki, Ind. Eng. Chem. Res. 42, 1863–1869 (2003)

    Article  Google Scholar 

  5. J. Grosse, B. Dietrich, G.I. Garrido, P. Habisreuther, N. Zarzalis, H. Martin, M. Kind, B. Kraushaar-Czarnetzki, Ind. Eng. Chem. Res. 48, 10395–10401 (2009)

    Article  Google Scholar 

  6. D.L. Duan, R.L. Zhang, X.J. Ding, S. Li, Mater. Sci. Technol. 22, 1364–1367 (2006)

    Article  Google Scholar 

  7. V.V. Calmidi, R.L. Mahajan, J. Heat Trans-T ASME 121, 466–471 (1999)

    Article  Google Scholar 

  8. A. Bhattacharya, V.V. Calmidi, R.L. Mahajan, Int. J. Heat Mass Transfer 45, 1017–1031 (2002)

    Article  Google Scholar 

  9. L.J. Gibson, M.F. Ashby, Cellular Solids: Structure and Properties, vol. 33 (Cambridge University Press, Cambridge, 1988), pp. 487–488

    MATH  Google Scholar 

  10. K. Boomsma, D. Poulikakos, Int. J. Heat Mass Transf. 44, 827–836 (2001)

    Article  Google Scholar 

  11. Z. Dai, K. Nawaz, Y.G. Park, J. Bock, A.M. Jacobi, Int. Commun. Heat Mass 37, 575–580 (2010)

    Article  Google Scholar 

  12. S. Kanaun, O. Tkachenko, Int. J. Eng. Sci. 46, 551–571 (2008)

    Article  Google Scholar 

  13. Y. Yao, H. Wu, Z. Liu, Int. J. Therm. Sci. 97, 56–67 (2015)

    Article  Google Scholar 

  14. W. Thomson, Acta Math. 11, 121–134 (1887)

    Article  MathSciNet  Google Scholar 

  15. Jagjiwanram, R. Singh, Appl. Therm. Eng. 24, 2727–2735 (2004)

    Article  Google Scholar 

  16. M.S. Phanikumar, R.L. Mahajan, Int. J. Heat Mass Transf. 45, 3781–3793 (2002)

    Article  Google Scholar 

  17. E. Sadeghi, S. Hsieh, M. Bahrami, J. Phys. D Appl. Phys. 44, 125406 (2009)

    Article  ADS  Google Scholar 

  18. J.W. Paek, B.H. Kang, S.Y. Kim, J.M. Hyun, Int. J. Thermophys. 21, 453–464 (2000)

    Article  Google Scholar 

  19. X.H. Yang, J.J. Kuang, J.X. Bai, T.J. Lu, D.F. Jin, J. Xi’an Jiao Tong Univ. 48, 79–84 (2014)

    Google Scholar 

Download references

Acknowledgment

This work was supported by National Basic Research Program of China-973 Program 2015CB857100.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qian Ye.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, H., Ye, Q. & Meng, G. The Simplified Analytical Models for Evaluating the Heat Transfer Performance of High-Porosity Metal Foams. Int J Thermophys 39, 87 (2018). https://doi.org/10.1007/s10765-018-2405-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-018-2405-0

Keywords

Navigation