Photothermal Beam Deflection Spectroscopy for the Determination of Thermal Diffusivity of Soils and Soil Aggregates

  • M. A. ProskurninEmail author
  • D. Korte
  • O. B. Rogova
  • D. S. Volkov
  • M. Franko
Part of the following topical collections:
  1. ICPPP-19: Selected Papers of the 19th International Conference on Photoacoustic and Photothermal Phenomena


Photothermal beam deflection spectroscopy (BDS) with a red He–Ne laser (632.8 nm, 35 mW) as an excitation beam source and a green He–Ne laser (543.1 nm, 2 mW) as a probe was used for estimating thermal diffusivity of several types of soil samples and individual soil aggregates with small surfaces (2 × 2 mm). It is shown that BDS can be used on demand for studies of changes in properties of soil entities of different hierarchical levels under the action of agrogenesis. It is presented that BDS clearly distinguishes between thermal diffusivities of different soil types: Sod-podzolic [Umbric Albeluvisols, Abruptic], 29 ± 3; Chernozem typical [Voronic Chernozems, Pachic], 9.9 ± 0.9; and Light Chestnut [Haplic Kastanozems, Chromic], 9.7 ± 0.9 cm2·h−1. Aggregates of chernozem soil show a significantly higher thermal diffusivity compared to the bulk soil. Thermal diffusivities of aggregates of Chernozem for virgin and bare fallow samples differ, 53 ± 4 cm2·h−1 and 45 ± 4 cm2·h−1, respectively. Micromonoliths of different Sod-podzolic soil horizons within the same profile (topsoil, depth 10–14 cm, and a parent rock with Fe illuviation, depth 180–185 cm) also show a significant difference, thermal diffusivities are 9.5 ± 0.8 cm2·h−1 and 27 ± 2 cm2·h−1, respectively. For soil micromonoliths, BDS is capable to distinguish the difference in thermal diffusivity resulting from the changes in the structure of aggregates.


Photothermal beam deflection spectroscopy Soils Soil aggregates Soil horizons Soil micromonoliths Thermal diffusivity 



This work was supported by the Russian Foundation for Basic Research, grant no. 16-33-60147 mol_a_dk to D.V, the Slovenian research Agency research program P1-0034 — “Analytics and chemical characterization of materials and processes” to D.K. and M.F.; and Erasmus + mobility grant to M.P.


  1. 1.
    A. Imeson, Desertification, Land Degradation and Sustainability (Wiley, Hoboken, 2012)Google Scholar
  2. 2.
    C. Boix-Fayos, A. Calvo-Cases, A.C. Imeson, M.D. Soriano-Soto, CATENA 44, 47 (2001). CrossRefGoogle Scholar
  3. 3.
    Y.T. Delelegn, W. Purahong, A. Blazevic, B. Yitaferu, T. Wubet, H. Göransson, D.L. Godbold, Sci. Rep. 7, 13602 (2017). ADSCrossRefGoogle Scholar
  4. 4.
    M.M. Sorour, M.M. Saleh, R.A. Mahmoud, Int. Commun. Heat Mass Transf. 17, 189 (1990). CrossRefGoogle Scholar
  5. 5.
    K.L. Bristow, G.J. Kluitenberg, C.J. Goding, T.S. Fitzgerald, Comput. Electron. Agric. 31, 265 (2001). CrossRefGoogle Scholar
  6. 6.
    Q.D. Jong van Lier, A. Durigon, Revista Brasileira de Ciência do Solo 37, 106 (2013)CrossRefGoogle Scholar
  7. 7.
    G. Józefaciuk, C. Sławiński, R.T. Walczak, A. Bieganowski, Review of Current Problems in Agrophysics (Inst. of Agrophysics PAS, Warsaw, 2005)Google Scholar
  8. 8.
    S.R. Evett, N. Agam, W.P. Kustas, P.D. Colaizzi, R.C. Schwartz, Adv. Water Resour. 50, 41 (2012). ADSCrossRefGoogle Scholar
  9. 9.
    M. Pawlak, A. Panas, A. Ludwig, A.D. Wieck, Thermochim. Acta 650, 33 (2017). CrossRefGoogle Scholar
  10. 10.
    M. Pawlak, M. Maliński, Infrared Phys. Technol. 64, 87 (2014). ADSCrossRefGoogle Scholar
  11. 11.
    D. Trefon-Radziejewska, J. Bodzenta, Opt. Mater. 45, 47 (2015). ADSCrossRefGoogle Scholar
  12. 12.
    D. Trefon-Radziejewska, J. Bodzenta, A. Kaźmierczak-Bałata, T. Łukasiewicz, Int. J. Thermophys. 33, 707 (2012). ADSCrossRefGoogle Scholar
  13. 13.
    A.C. Boccara, D. Fournier, J. Badoz, Appl. Phys. Lett. 36, 130 (1980). ADSCrossRefGoogle Scholar
  14. 14.
    J.C. Murphy, L.C. Aamodt, J. Appl. Phys. 51, 4580 (1980). ADSCrossRefGoogle Scholar
  15. 15.
    M. Bertolotti, G.L. Liakhou, R. Li Voti, S. Paoloni, C. Sibilia, J. Appl. Phys. 83, 966 (1998). ADSCrossRefGoogle Scholar
  16. 16.
    A. Salazar, A. Sánchez-Lavega, J.M. Terron, M. Gateshki, Bol. Soc. Esp. Ceram. Vidrio 39, 584 (2000)CrossRefGoogle Scholar
  17. 17.
    F.B.G. Astrath, N.G.C. Astrath, J. Shen, J. Zhou, M.L. Baesso, J. Appl. Phys. 104, 066101 (2008). ADSCrossRefGoogle Scholar
  18. 18.
    O.O. Dada, S.E. Bialkowski, Appl. Spectrosc. 62, 1326 (2008)ADSCrossRefGoogle Scholar
  19. 19.
    J. Bodzenta, A. Kaźmierczak-Bałata, R. Bukowski, M. Nowak, B. Solecka, Int. J. Thermophys. 38, 93 (2017). ADSCrossRefGoogle Scholar
  20. 20.
    D. Korte Kobylinska, R.J. Bukowski, J. Bodzenta, S. Kochowski, Opt. Appl. 38, 445 (2008)Google Scholar
  21. 21.
    D. Korte Kobylinska, R.J. Bukowski, B. Burak, J. Bodzenta, S. Kochowski, Appl. Opt. 46, 5216 (2007). ADSCrossRefGoogle Scholar
  22. 22.
    D. Korte, G. Carraro, F. Fresno, M. Franko, Int. J. Thermophys. 35, 2107 (2014). ADSCrossRefGoogle Scholar
  23. 23.
    D. Korte, M. Franko, Int. J. Thermophys. 35, 2352 (2014). ADSCrossRefGoogle Scholar
  24. 24.
    D. Korte, M. Franko, J. Opt. Soc. Am. A 32, 61 (2015). ADSCrossRefGoogle Scholar
  25. 25.
    A. Mathew, J. Ravi, K.N. Madhusoodanan, K.P.R. Nair, T.M.A. Rasheed, Appl. Surf. Sci. 227, 410 (2004). ADSCrossRefGoogle Scholar
  26. 26.
    A. Salazar, A. Sánchez-Lavega, J. Fernández, J. Appl. Phys. 74, 1539 (1993). ADSCrossRefGoogle Scholar
  27. 27.
    A. Sánchez-Lavega, A. Salazar, A. Ocariz, L. Pottier, E. Gomez, L.M. Villar, E. Macho, Appl. Phys. A 65, 15 (1997). ADSCrossRefGoogle Scholar
  28. 28.
    A. Salazar, A. Sánchez-Lavega, Rev. Sci. Instrum. 65, 2896 (1994). ADSCrossRefGoogle Scholar
  29. 29.
    A. Salazar, A. Sánchez-Lavega, J. Fernandez, J. Appl. Phys. 70, 3031 (1991). ADSCrossRefGoogle Scholar
  30. 30.
    J. Rantala, J. Jaarinen, P.K. Kuo, Appl. Phys. A 55, 586 (1992). ADSCrossRefGoogle Scholar
  31. 31.
    C. Vales-Pinzon, J. Ordonez-Miranda, J.J. Alvarado-Gil, J. Appl. Phys. 112, 064909 (2012). ADSCrossRefGoogle Scholar
  32. 32.
    F.A. McDonald, G.C. Wetsel Jr., J. Appl. Phys. 49, 2313 (1978). ADSCrossRefGoogle Scholar
  33. 33.
    W.M. Haynes, CRC Handbook of Chemistry and Physics, 96th edn. (CRC Press, Boca Raton, 2015)Google Scholar
  34. 34.
    J. AndújarMárquez, M. MartínezBohórquez, S. GómezMelgar, Sensors 16, 306 (2016)CrossRefGoogle Scholar
  35. 35.
    P. Koorevaar, G. Menelik, C. Dirksen, Elements of Soil Physics. Developments in Soil Science, vol. 13 (Elsevier, New York, 1983), pp. 193–207CrossRefGoogle Scholar
  36. 36.
    D. Badía, S. López-García, C. Martí, O. Ortíz-Perpiñá, A. Girona-García, J. Casanova-Gascón, Sci. Total Environ. 601–602, 1119 (2017). ADSCrossRefGoogle Scholar
  37. 37.
    L.A. Douglas, Soil Micromorphology: A Basic and Applied Science (Elsevier, New York, 1990)Google Scholar
  38. 38.
    G.R. Blake, G.C. Steinhardt, X.P. Pombal, J.C.N. Muñoz, A.M. Cortizas, R.W. Arnold, R.J. Schaetzl, F. Stagnitti, J.Y. Parlange, T.S. Steenhuis, W. Chesworth, Y. Mualem, H.J. Morel-Seytoux, O. Spaargaren, W. Chesworth, Y.K. Soon, D.S. Orlov, O. Spaargaren, J.J. Oertli, J. Gliński, J. Lipiec, W. Stępniewski, O. Spaargaren, O. Spaargaren, Podzols, in Encyclopedia of Soil Science, ed. by W. Chesworth (Springer, Dordrecht, 2008), pp. 580–582CrossRefGoogle Scholar
  39. 39.
    V.D. Goncharov, K.G. Moiseev, Eurasian Soil Sci. 46, 548 (2013). ADSCrossRefGoogle Scholar
  40. 40.
    L.J. Munkholm, R.J. Heck, B. Deen, T. Zidar, Geoderma 268, 52 (2016). ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Chemistry DepartmentLomonosov Moscow State UniversityMoscowRussia
  2. 2.Laboratory for Environmental and Life SciencesUniversity of Nova GoricaNova GoricaSlovenia
  3. 3.Dokuchaev Soil Science InstituteMoscowRussia

Personalised recommendations