Experimental Determination of Frost Resistance of Autoclaved Aerated Concrete at Different Levels of Moisture Saturation

  • Václav Kočí
  • Jiří Maděra
  • Miloš Jerman
  • Robert Černý


The ability of porous building materials to stand up to moisture phase changes induced by alternating environment is described mostly by means of their frost resistance. However, the test conditions defined by relevant standards might not capture the real situation on building site in various locations. In particular, the prescribed full water saturation of analyzed specimens during the whole time of a freeze/thaw experiment presents an ultimate case only but certainly not an everyday reality. Even the materials of surface layers are mostly exposed to such severe conditions just for a limited period of time. In this paper, the experimental analysis of frost resistance of three different types of autoclaved aerated concrete (AAC) is performed in an extended way, including not only the standard testing but also the investigation of dry- and partially saturated samples. A complementary computational analysis of an AAC building envelope in Central European climate is presented as well, in order to illustrate the likely hygric conditions in the wall. Experimental results show that according to the standard test the loss of compressive strength, as well as the loss of mass after 25 cycles, is acceptable for all studied samples but after 50 cycles only the material with the compressive strength of 4 MPa performs satisfactorily. On the other hand, the tests with initially dried or partially saturated samples indicate a good frost resistance of all studied materials for both 25 and 50 cycles.


Autoclaved aerated concrete Frost resistance Low temperatures Material properties Partial water saturation 



This research has been supported by the Czech Science Foundation, under Project No. 17-01365S.


  1. 1.
    M. Abid, X.M. Hou, W.Z. Zheng, R.R. Hussain, Constr. Build. Mater. 147, 339 (2017)CrossRefGoogle Scholar
  2. 2.
    R. Prikryl, Miner. Depos. Res. High-Tech World 1–4, 1829 (2013)Google Scholar
  3. 3.
    J. M. P. Q. Delgado, A. S. Guimarães, V. P. de Freitas, I. Antepara, V Kočí, R. Černý, Adv. Mater. Sci. Eng. 2016, Article ID 1280894 (2016)Google Scholar
  4. 4.
    P. Lopez-Arce, M. Tagnit-Hammou, B. Menendez, J.D. Mertz, A. Kaci, Mater. Struct. 49, 5097 (2016)CrossRefGoogle Scholar
  5. 5.
    M.A. Khanfour, A. El Refai, Constr. Build. Mater. 145, 135 (2017)CrossRefGoogle Scholar
  6. 6.
    J. Koci, J. Madera, M. Keppert, R. Cerny, Cold Reg. Sci. Technol. 135, 1 (2017)CrossRefGoogle Scholar
  7. 7.
    ČSN 73 1322, Determination of Frost Resistance of Concrete (Czech Office for Standards, Metrology and Testing, Prague, 2003)Google Scholar
  8. 8.
    ASTM C666/C666M-15, Standard Test Method for Resistance of Concrete to Rapid Freezing and Thawing (ASTM International, West Conshohocken, PA, 2015)Google Scholar
  9. 9.
    M.J. Setzer, P. Heine, S. Kasparek, S. Palecki, R. Auberg, V. Feldrappe, E. Siebel, Mater. Struct. 37, 743 (2004)CrossRefGoogle Scholar
  10. 10.
    ČSN 72 2609, Methods of tests for masonry unitsSpecific properties of clay masonry units (Czech Office for Standards, Metrology and Testing, Prague, 2017)Google Scholar
  11. 11.
    J. Brozovsky, Russ. J. Nondestruct. 50, 607 (2014)CrossRefGoogle Scholar
  12. 12.
    EN 12371, Natural stone test methods: Determination of frost resistance (European Committee for Standardization, 2010)Google Scholar
  13. 13.
    EN 15304, Determination of the freeze-thaw resistance of autoclaved aerated concrete (European Committee for Standardization, 2010)Google Scholar
  14. 14.
    N. Luodes, E. Panova, R. Bellopede, Environ. Earth Sci. 76, 328 (2017)CrossRefGoogle Scholar
  15. 15.
    B. Sena da Fonseca, A.P. Ferreira Pinto, S. Picarra, M.F. Montemor, Mater. Des. 120, 10 (2017)CrossRefGoogle Scholar
  16. 16.
    G. Bumanis, L. Vitola, D. Bajare, L. Dembovska, I. Pundiene, Ceram. Int. 43, 5471 (2017)CrossRefGoogle Scholar
  17. 17.
    N. Belayachi, D. Hoxha, M. Slaimia, Constr. Build. Mater. 125, 912 (2016)CrossRefGoogle Scholar
  18. 18.
    D. Nagockiene, G. Girskas, G. Skripkiunas, Constr. Build. Mater. 135, 37 (2017)CrossRefGoogle Scholar
  19. 19.
    J.P. Ingham, Q. J. Eng. Geol. Hydrog. 38, 387 (2005)CrossRefGoogle Scholar
  20. 20.
    J. Kočí, V. Kočí, J. Maděra, P. Rovnaníková, R. Černý, W.I.T. Trans, Eng. Sci. 68, 267 (2010)Google Scholar
  21. 21.
    J. Maděra, V. Kočí, J. Kočí, J. Výborný, R. Černý, W.I.T. Trans, Eng. Sci. 68, 291 (2010)Google Scholar
  22. 22.
    R. Černý, Complex System of Methods for Directed Design and Assessment of Functional Properties of Building Materials and Its Application (CTU Prague, Prague, 2013)Google Scholar
  23. 23.
    ČSN 73 0540-3, Thermal protection of buildings - Part 3: Design value quantities (Czech Office for Standards, Metrology and Testing, Prague, 2005)Google Scholar
  24. 24.
    ISO 15927-4, Hygrothermal performance of buildingsCalculation and presentation of climatic dataPart 4: Hourly data for assessing the annual energy use for heating and cooling (ISO International Organisation for Standardization, 2005)Google Scholar
  25. 25.
    R. Černý, Complex System of Methods for Directed Design and Assessment of Functional Properties of Building Materials: Assessment and Synthesis of Analytical Data and Construction of the System (CTU Prague, Prague, 2010)Google Scholar
  26. 26.
    J. Kruis, T. Koudelka, T. Krejčí, Math. Comput. Simul. 80, 1578 (2010)CrossRefGoogle Scholar
  27. 27.
    J. Maděra, J. Kočí, V. Kočí, J. Kruis, Adv. Eng. Softw. 113, 47 (2017)CrossRefGoogle Scholar
  28. 28.
    M. Jerman, M. Keppert, J. Výborný, R. Černý, Constr. Build. Mater. 41, 352 (2013)CrossRefGoogle Scholar
  29. 29.
    Z. Pavlík, R. Černý, Int. J. Thermophys. 33, 1704 (2012)ADSCrossRefGoogle Scholar
  30. 30.
    M. Koniorczyk, D. Bednarska, Micropor. Mesopor. Mat. 250, 55 (2017)CrossRefGoogle Scholar
  31. 31.
    C. Wang, Y. Lai, M. Zhang, Appl. Therm. Eng. 124, 1049 (2017)CrossRefGoogle Scholar
  32. 32.
    P.J. Tikalsky, J. Pospisil, W. MacDonald, Cem. Concr. Res. 34, 889 (2004)CrossRefGoogle Scholar
  33. 33.
    C.S. Shon, D.G. Zollinger, A.E.R. Adv, Eng. Res. 29, 359 (2016)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Václav Kočí
    • 1
  • Jiří Maděra
    • 1
  • Miloš Jerman
    • 1
  • Robert Černý
    • 1
  1. 1.Department of Materials Engineering and Chemistry Faculty of Civil EngineeringCzech Technical University in PraguePragueCzech Republic

Personalised recommendations