Evaluation on Dorsey Method in Surface Tension Measurement of Solder Liquids Containing Surfactants

  • Xingke Zhao
  • Feiming Xie
  • Jinsheng Fan
  • Dayong Liu
  • Jihua Huang
  • Shuhai Chen
Article
  • 38 Downloads

Abstract

With the purpose of developing a feasible approach for measuring the surface tension of solders containing surfactants, the surface tension of Sn–3Ag–0.5Cu–xP solder alloys, with various drop sizes as well as different phosphorus (P) content, was evaluated using the Dorsey method based on the sessile drop test. The results show that the accuracy of the surface tension calculations depends on both of sessile drop size and the liquid metal composition. With a proper drop size, in the range of 4.5 mm to 5.3 mm in equivalent spherical diameters, the deviation of the surface tension calculation can be limited to 1.43 mN·m−1 and 6.30 mN·m−1 for SnAgCu and SnAgCu–P, respectively. The surface tension of SnAgCu–xP solder alloys decreases quickly to a minimum value when the P content reaches 0.5 wt% and subsequently increases slowly with the P content further increasing. The formation of a P-enriched surface layer and Sn4P3 intermetallic phases is regarded to be responsible for the decreasing and subsequent increasing of surface tension, respectively.

Keywords

Dorsey method Sessile drop SnAgCu solder Surface tension Surfactant 

Notes

Acknowledgments

The authors would like to thank Filipe Neves from National Laboratory of Energy and Geology (LNEG) Lisbon for proofreading the article.

References

  1. 1.
    S. Wiese, F. Feustel, E. Meusel, Characterizations of constitutive behavior of SnAg, SnAgCu and SnPb solder in flip chip joints. Sens. Actuators A 99, 188–193 (2002)CrossRefGoogle Scholar
  2. 2.
    K. Kanlayasiri, M. Mongkolwongrojn, T. Ariga, Influence of indium addition on characteristics of Sn–0.3Ag–0.7Cu solder alloy. J. Alloys Compd. 485, 225–230 (2009)CrossRefGoogle Scholar
  3. 3.
    Z. Moser, P. Sebo, W. Gąsior, P. Svec, J. Pstrús, Effect of indium on wettability of Sn–Ag–Cu solders. Experiment vs. modeling, Part I. Calphad 33, 63–68 (2009)CrossRefGoogle Scholar
  4. 4.
    C.L. Chuang, L.C. Tsao, H.K. Lin, L.P. Feng, Effects of small amount of active Ti element additions on microstructure and property of Sn3.5Ag0.5Cu solder. Mater. Sci. Eng. A 558, 478–484 (2012)CrossRefGoogle Scholar
  5. 5.
    L. Zhang, J.G. Han, C.W. He, Y.H. Guo, Effect of Zn on properties and microstructure of SnAgCu alloy. J. Mater. Sci. Mater. Electron. 23, 1950–1956 (2012)CrossRefGoogle Scholar
  6. 6.
    Z. Moser, W. Gasior, K. Bukat, Pb-free solders, part 1: wettability testing of Sn–Ag–Cu alloys with Bi additions. J. Phase Equilib. 27, 133–139 (2006)Google Scholar
  7. 7.
    N.S. Liu, K.L. Lin, The effect of Ga content on the wetting reaction and interfacial morphology formed between Sn–8.55Zn–0.5Ag–0.1Al–xGa solders and Cu. Scr. Mater. 54, 219–224 (2006)ADSCrossRefGoogle Scholar
  8. 8.
    C.M.T. Law, C.M.L. Wu, D.Q. Yu, L. Wang, J.K.L. Lai, Microstructure, solderability and growth of intermetallic compounds of Sn–Ag–Cu–RE lead-free solder alloys. J. Electron. Mater. 35, 89–93 (2006)ADSCrossRefGoogle Scholar
  9. 9.
    H. Hao, J. Tian, Y.W. Shi, Y.P. Lei, Z.D. Xia, Properties of Sn3.8Ag0.7Cu solder alloy with trace rare earth element Y additions. J. Electron. Mater. 36, 766–774 (2007)ADSCrossRefGoogle Scholar
  10. 10.
    Y. Shi, J. Tian, H. Hao, Z. Xia, Y. Lei, F. Guo, Effects of small amount addition of rare earth Er on microstructure and property of SnAgCu solder. J. Alloys Compd. 453, 180–184 (2008)CrossRefGoogle Scholar
  11. 11.
    L.L. Gao, S.B. Xue, L. Zhang, Z. Sheng, G. Zeng, F. Ji, Effects of trace rare earth Nd addition on micro structure and properties of SnAgCu solder. J. Mater. Sci. Mater. Electron. 21, 643–648 (2010)CrossRefGoogle Scholar
  12. 12.
    L. Zhang, X.Y. Fan, Y.H. Guo, C.W. He, Properties enhancement of SnAgCu solders containing rare earth Yb. Mater. Des. 57, 646–651 (2014)CrossRefGoogle Scholar
  13. 13.
    A.P. Xian, G.L. Gong, Oxidation behavior of molten tin doped with phosphorus. J. Electron. Mater. 36, 1669–1678 (2007)ADSCrossRefGoogle Scholar
  14. 14.
    J. Lee, T. Tanaka, M. Yamamoto, S. Hara, Effect of oxygen on surface tension of liquid Ag–Sn alloys. Mater. Trans. JIM 45, 625–629 (2004)CrossRefGoogle Scholar
  15. 15.
    Z. Moser, W. Gąsior, J. Pstruś, A. Dębski, Wettability studies of Pb-free soldering materials. Int. J. Thermophys. 29, 1974–1986 (2008)ADSCrossRefGoogle Scholar
  16. 16.
    N. Zhao, X.M. Pan, D.Q. Yu, H.T. Ma, L. Wand, Viscosity and surface tension of liquid Sn–Cu lead-free solders. J. Electron. Mater. 38, 828–833 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    R.M. Chaar, M.E. Maniani, M.E. Moudane, A. Sabbar, Pb-free solders surface tension calculation of the Ag–Bi–Sn ternary alloys at 873 K. J. Mater. Environ. Sci. 5, 2037–2044 (2014)Google Scholar
  18. 18.
    R. Picha, J. Vrestal, A. Kroupa, Prediction of alloy surface tension using a thermodynamic database. Calphad 28, 141–146 (2004)CrossRefGoogle Scholar
  19. 19.
    N.E. Dorsey, J. Washington, Sessile drops and bubbles. Acad. Sci. 18, 505–509 (1928)Google Scholar
  20. 20.
    N.E. Dorsey, Measurement of surface tension. Sci. Pap. Bur. Stand. 21, 563–595 (1926)CrossRefGoogle Scholar
  21. 21.
    Y.C. Lin, J.G. Duh, Phase transformation of the phosphorus-rich layer in SnAgCu/Ni–P solder joints. Scr. Mater. 54, 1661–1665 (2006)CrossRefGoogle Scholar
  22. 22.
    A. Ritscher, C. Schmetterer, H. Ipser, Pressure dependence of the tin-phosphorus phase diagram. Monatsh. Chem. 143, 1593–1602 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Xingke Zhao
    • 1
  • Feiming Xie
    • 1
  • Jinsheng Fan
    • 1
  • Dayong Liu
    • 1
  • Jihua Huang
    • 1
  • Shuhai Chen
    • 1
  1. 1.School of Materials Science and EngineeringUniversity of Science and Technology BeijingBeijingChina

Personalised recommendations