Vacuum Radiance-Temperature Standard Facility for Infrared Remote Sensing at NIM

  • X. P. Hao
  • J. Song
  • M. Xu
  • J. P. Sun
  • L. Y. Gong
  • Z. D. Yuan
  • X. F. Lu
TEMPMEKO 2016
  • 32 Downloads
Part of the following topical collections:
  1. TEMPMEKO 2016: Selected Papers of the 12th International Symposium on Temperature, Humidity, Moisture and Thermal Measurements in Industry and Science

Abstract

As infrared remote sensors are very important parts of Earth observation satellites, they must be calibrated based on the radiance temperature of a blackbody in a vacuum chamber prior to launch. The uncertainty of such temperature is thus an essential component of the sensors’ uncertainty. This paper describes the vacuum radiance-temperature standard facility (VRTSF) at the National Institute of Metrology of China, which will serve to calibrate infrared remote sensors on Chinese meteorological satellites. The VRTSF can be used to calibrate vacuum blackbody radiance temperature, including those used to calibrate infrared remote sensors. The components of the VRTSF are described in this paper, including the VMTBB, the LNBB, the FTIR spectrometer, the reduced-background optical system, the vacuum chamber used to calibrate customers’ blackbody, the vacuum-pumping system and the liquid-nitrogen-support system. The experimental methods and results are expounded. The uncertainty of the radiance temperature of VMTBB is 0.026 °C at 30 °C over 10 μm.

Keywords

FTIR Infrared remote sensing Liquid-nitrogen blackbody Uncertainty Vacuum medium-temperature blackbody Vacuum radiance-temperature standard facility 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 11475162 and 51576181) and National High-tech R&D Program (863 Program No. 2015AA123701).

References

  1. 1.
    G. Ohring, B. Wielicki, R. Spencer, B. Emery, R. Datla, Bull. Am. Meteorol. Soc. 86, 9 (2005)CrossRefGoogle Scholar
  2. 2.
    J.B. Flowler, B.C. Johnson, J.P. Rice, S.R. Lorentz, Metrologia 35, 4 (1998)Google Scholar
  3. 3.
    A.C. Carter, R.U. Datla, T.M. Jung, A.W. Smith, J.A. Fedchak, Metrologia 43, 2 (2006)CrossRefGoogle Scholar
  4. 4.
    J.P. Rice, B.C. Johnson, Metrologia 35, 4 (1998)Google Scholar
  5. 5.
    S. Mekhontsev, L. Hanssen, S. Lorentz, J. Rice, in Proceedings of 11th International Conference on New Developments and Applications in Optical Radiometry, 2011Google Scholar
  6. 6.
    C. Monte, B. Gutschwager, S.P. Morozova, J. Hollandt, Int. J. Thermophys. 30, 203 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    C. Monte, B. Gutschwager, A. Adibekyan, M. Kehrt, A. Ebersoldt, F. Olschewski, J. Holl. Atmos. Meas. Tech. Discuss. 6, 3 (2013)Google Scholar
  8. 8.
    C. Monte, B. Gutschwager, A. Adibekyan, M. Kehrt, F. Olschewski, P. Preusse, J. Ungermann, H. Oelhaf, F. Friedl-Vallon, J. Hollandt, in Proceeding of 12th International Conference on New Developments and Applications in Optical Radiometry, Finland: NEWRAD, 2014Google Scholar
  9. 9.
    V.S. Ivanov, B.E. Lisiansky, S.P. Morozova, V.I. Sapritsky, U.A. Melenevsky, L.Y. Xi, L. Pei, Metrologia 37, 5 (2002)Google Scholar
  10. 10.
    S.P. Morozova, N.A. Parfentiev, B.E. Lisiansky, U.A. Melenevsky, B. Gutschwager, C. Monte, J. Hollandt, Int. J. Thermophys. 31, 8 (2010)CrossRefGoogle Scholar
  11. 11.
    S.P. Morozova, N.A. Parfentiev, B.E. Lisiansky, U.A. Melenevsky, B. Gutschwager, C. Monte, J. Hollandt, Int. J. Thermophys. 29, 1 (2008)CrossRefGoogle Scholar
  12. 12.
    V.I. Sapritsky, A.A. Katysheva, V.N. Krutikov, B.E. Lisyansky, S.P. Morozova, S.A. Ogarev, A.S. Panfilov, N.A. Parfentyev, D.M. Karpunin, E.V. Makolkin, in Proceeding of 12th International Conference on New Developments and Applications in Optical Radiometry, Finland: NEWRAD, 2014Google Scholar
  13. 13.
    X.P. Hao, J. Song, J.P. Sun, M. Xu, Z.D. Yuan, Z.L. Liu, Opt. Precis. Eng. 23, 7 (2015)Google Scholar
  14. 14.
    A. Adibekyan, E. Kononogova, C. Monte, J. Hollandt, Int. J. Thermophys. 38, 89 (2017)ADSCrossRefGoogle Scholar
  15. 15.
    S.P. Sapritsky, A.V. Prohorov, Metrologica 29, 1 (1992)ADSCrossRefGoogle Scholar
  16. 16.
    A. Adibekyan, C. Monte, M. Kehrt, B. Gutschwager, J. Hollandt, Int. J. Thermophys. 36, 283 (2015)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.National Institute of MetrologyBeijingChina
  2. 2.Chengdu University of TechnologyChengduChina

Personalised recommendations