Photocarrier Radiometry for Non-contact Evaluation of Monocrystalline Silicon Solar Cell Under Low-Energy (< 200 keV) Proton Irradiation

  • Md. Oliullah
  • J. Y. Liu
  • P. Song
  • Y. Wang
Part of the following topical collections:
  1. ICPPP-19: Selected Papers of the 19th International Conference on Photoacoustic and Photothermal Phenomena


A three-layer theoretical model is developed for the characterization of the electronic transport properties (lifetime τ, diffusion coefficient D, and surface recombination velocity s) with energetic particle irradiation on solar cells using non-contact photocarrier radiometry. Monte Carlo (MC) simulation is carried out to obtain the depth profiles of the proton irradiation layer at different low energies (< 200 keV). The monocrystalline silicon (c-Si) solar cells are investigated under different low-energy proton irradiation, and the carrier transport parameters of the three layers are obtained by best-fitting of the experimental results. The results show that the low-energy protons have little influence on the transport parameters of the non-irradiated layer, but high influences on both of the p and n-region irradiation layers which are consisted of MC simulation.


Monocrystalline silicon solar cell Photocarrier radiometry Proton irradiation 



This work was supported by the Foundation for Innovative Research Groups of the National Nature Science Foundation of China under Grant No. 51521003, the Chinese National Natural Science Foundation under Contract Nos. 61571153, 51173034, Self-planned Task of State Key Laboratory of Robotics and System (HIT) and the Program of Introducing Talents of Discipline of Universities (Grant No. B07108).


  1. 1.
    P. Cannon, M. Angling, L. Barclay, C. Curry, C. Dyer, R. Edwards, G. Greene, M.A. Hapgood, R.B. Horne, D. Jackson, C. Mitchell, J. Owen, A. Richards, K. Ryden, S. Saunders, M. Sweeting, R. Tanner, A. Thomson, C. Underwood, Extreme space weather: impacts on engineered systems and infrastructure (Royal Academy of Engineering, London, 2013), pp. 1–68Google Scholar
  2. 2.
    R. Statler, D. Curtin, I.E.E.E. Trans, Electron Devices 18, 412–417 (1971)ADSCrossRefGoogle Scholar
  3. 3.
    J.J. Loferski, Rev. Phys. Appl. (Paris) 1, 221–227 (1966)CrossRefGoogle Scholar
  4. 4.
    C. Wang, A. Mandelis, J. Tolev, B. Burchard, J. Meijer, J. Appl. Phys. 101, 123109 (2007)ADSCrossRefGoogle Scholar
  5. 5.
    S.M.N. Mello, C.C. Ghizoni, L.C.M. Miranda, H. Vargas, J. Appl. Phys. 61, 5176 (1987)ADSCrossRefGoogle Scholar
  6. 6.
    D. Hsieh, T. Tsai, S. Huang, Y. Yang, C. Yang, J. Wu, J. Dai, J. Chen, J. Tan, P. Mukundhan, Microelectron. Eng. 88, 583–588 (2011)CrossRefGoogle Scholar
  7. 7.
    T. Dehoux, O.B. Wright, R.L. Voti, Ultrasonics 50, 197 (2010)CrossRefGoogle Scholar
  8. 8.
    Z. Hameiri, P. Chaturvedi, Appl. Phys. Lett. 102, 073502 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    M.D. Losego, M.E. Grady, N.R. Sottos, D.G. Cahill, P.V. Braun, Nat. Mater. 11, 502 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    A. Mandelis, J. Batista, D. Shaughnessy, Phys. Rev. B 67, 205208 (2003)ADSCrossRefGoogle Scholar
  11. 11.
    B. Li, D. Shaughnessy, A. Mandelis, J. Batista, J. Garcia, J. Appl. Phys. 96, 186 (2004)ADSCrossRefGoogle Scholar
  12. 12.
    D. Shaughnessy, B. Li, A. Mandelis, J. Batista, Appl. Phys. Lett. 84, 5219 (2004)ADSCrossRefGoogle Scholar
  13. 13.
    A. Mandelis, M. Pawlak, C. Wang, I. Delgadillo-Holtfort, J. Pelzl, J. Appl. Phys. 98, 123518 (2005)ADSCrossRefGoogle Scholar
  14. 14.
    B. Li, D. Shaughnessy, A. Mandelis, J. Appl. Phys. 97, 023701 (2005)ADSCrossRefGoogle Scholar
  15. 15.
    P. Song, J. Liu, H. Yuan, M. Oliullah, F. Wang, Y. Wang, Nucl. Instrum. Methods Phys. Res., Sect. B 383, 171 (2016)ADSCrossRefGoogle Scholar
  16. 16.
    B. Li, D. Shaughnessy, A. Mandelis, J. Batista, J. Garcia, J. Appl. Phys. 95, 7832 (2004)ADSCrossRefGoogle Scholar
  17. 17.
    J.F. Ziegler, J.P. Biersack, U. Littmark, The Stopping and Range of Ions in Solids (Pergamon, New York, 1996)Google Scholar
  18. 18.
    M.A. Green, M.J. Keevers, Prog. Photovolt: Res. Appl. 3, 189 (1995)CrossRefGoogle Scholar
  19. 19.
    S.-Y. Zhang, J.-C. Cheng, Semicond. Sci. Technol. 6, 670 (1991)ADSCrossRefGoogle Scholar
  20. 20.
    J.Y. Liu, L. Qin, P. Song, J.L. Gong, Y. Wang, A. Mandelis, Acta Phys. Sin. 63, 227801 (2014)Google Scholar
  21. 21.
    J.Y. Liu, P. Song, F. Wang, Y. Wang, Chin. Phys. B 24, 097801 (2015)ADSCrossRefGoogle Scholar
  22. 22.
    Y. Zhang, A. Melnikov, A. Mandelis, B. Halliop, N.P. Kherani, R. Zhu, Rev. Sci. Instrum. 86, 033901 (2015)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Mechatronics EngineeringHarbin Institute of TechnologyHarbinPeople’s Republic of China
  2. 2.State Key Laboratory of Robotics and SystemHarbin Institute of TechnologyHarbinPeople’s Republic of China

Personalised recommendations