Advertisement

Frequency Domain Analysis of Multiwavelength Photoacoustic Signals for Differentiating Tissue Components

  • X. H. Jian
  • F. L. Dong
  • J. Xu
  • Z. J. Li
  • Y. Jiao
  • Y. Y. Cui
ICPPP 19
  • 118 Downloads
Part of the following topical collections:
  1. ICPPP-19: Selected Papers of the 19th International Conference on Photoacoustic and Photothermal Phenomena

Abstract

The feasibility of differentiating tissue components by performing frequency domain analysis of photoacoustic images acquired at different wavelengths was studied in this paper. Firstly, according to the basic theory of photoacoustic imaging, a brief theoretical model for frequency domain analysis of multiwavelength photoacoustic signal was deduced. The experiment results proved that the performance of different targets in frequency domain is quite different. Especially, the acoustic spectrum characteristic peaks of different targets are unique, which are 2.93 MHz, 5.37 MHz, 6.83 MHz, and 8.78 MHz for PDMS phantom, while 13.20 MHz, 16.60 MHz, 26.86 MHz, and 29.30 MHz for pork fat. The results indicated that the acoustic spectrum of photoacoustic imaging signals is possible to be utilized for tissue composition characterization.

Keywords

Frequency domain analysis Multiwavelength photoacoustic imaging Photoacoustic acoustic spectrum Tissue characterization 

Notes

Acknowledgements

The project was supported by the National Key Technology Research and Development Program of the Ministry of Science and Technology of China (Grant No. 2016YFC0103302), International Cooperation Program of Jiangsu Province (Grant Nos. BZ2016023, BK20161235), the Funds for Technology of Suzhou, China (Grant Nos. SYG201433, 201456, SZS201510), and China Postdoctoral Program (Grant No. 2015M581409).

References

  1. 1.
    M. Xu, L.V. Wang, Rev. Sci. Instrum. 77, 041101 (2006)ADSCrossRefGoogle Scholar
  2. 2.
    S. Mallidi, G.P. Luke, S. Emelianov, Trends Biotechnol. 29, 213 (2011)CrossRefGoogle Scholar
  3. 3.
    K.E. Wilson, S.V. Bachawal, L. Tian, J.K. Willmann, Theranostics 4, 1062 (2014)CrossRefGoogle Scholar
  4. 4.
    H.F. Zhang, K. Maslov, G. Stoica, L.V. Wang, Nat. Biotechnol. 24, 848 (2006)CrossRefGoogle Scholar
  5. 5.
    M.R. Bernsen, K. Kooiman, M. Segbers, F.W. van Leeuwen, M. de Jong, Eur. J. Nucl. Med. Mol. Imaging 42, 579 (2015)CrossRefGoogle Scholar
  6. 6.
    D. Pan, M. Pramanik, A. Senpan, J.S. Allen, H. Zhang, S.A. Wickline, L.V. Wang, G.M. Lanza, FASEB J 25, 875 (2011)CrossRefGoogle Scholar
  7. 7.
    L.V. Wang, S. Hu, Science 335, 1458 (2012)ADSCrossRefGoogle Scholar
  8. 8.
    L. Wang, Photoacoustic Imaging and Spectroscopy (CRC Press, Boca Raton, 2009)CrossRefGoogle Scholar
  9. 9.
    R.E. Kumon, C.X. Deng, X. Wang, Ultrasound Med. Biol. 37, 834 (2011)CrossRefGoogle Scholar
  10. 10.
    K.P. Köstli, P.C. Beard, Appl. Opt. 42, 1899 (2003)ADSCrossRefGoogle Scholar
  11. 11.
    Y. Xu, M. Xu, L.V. Wang, IEEE Trans. Med. Imaging 21, 829 (2002)CrossRefGoogle Scholar
  12. 12.
    G. Xu, I.A. Dar, C. Tao, X. Liu, C.X. Deng, X. Wang, Ultrasound Med. Biol. 41, 1473 (2015)CrossRefGoogle Scholar
  13. 13.
    P.V. Chitnis, J. Mamou, A. Sampathkumar, E.J. Feleppa, in SPIE BiOS (2014)Google Scholar
  14. 14.
    D. Xing, S. Qian, in SPIE Process, (2001)Google Scholar
  15. 15.
    A. Gertsch, N. Bush, D. Birtill, J. Bamber, in SPIE Process (2010)Google Scholar
  16. 16.
    R.H. Silverman, F. Kong, H.O. Lloyd, Y. Chen, in SPIE Process (2010)Google Scholar
  17. 17.
    S. Sinha, N.A. Rao, B.K. Chinni, V.S. Dogra, J. Ultrasound Med. 35, 2165 (2016)CrossRefGoogle Scholar
  18. 18.
    C. Patel, A. Tam, Rev. Mod. Phys. 53, 517 (1981)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Suzhou Institute of Biomedical Engineering and TechnologyChinese Academy of SciencesSuzhouChina
  2. 2.The First Affiliated Hospital of Soochow UniversitySuzhouChina

Personalised recommendations