Skip to main content
Log in

Resonant Absorption in GaAs-Based Nanowires by Means of Photo-Acoustic Spectroscopy

  • ICPPP 19
  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Semiconductor nanowires made of high refractive index materials can couple the incoming light to specific waveguide modes that offer resonant absorption enhancement under the bandgap wavelength, essential for light harvesting, lasing and detection applications. Moreover, the non-trivial ellipticity of such modes can offer near field interactions with chiral molecules, governed by near chiral field. These modes are therefore very important to detect. Here, we present the photo-acoustic spectroscopy as a low-cost, reliable, sensitive and scattering-free tool to measure the spectral position and absorption efficiency of these modes. The investigated samples are hexagonal nanowires with GaAs core; the fabrication by means of lithography-free molecular beam epitaxy provides controllable and uniform dimensions that allow for the excitation of the fundamental resonant mode around 800 nm. We show that the modulation frequency increase leads to the discrimination of the resonant mode absorption from the overall absorption of the substrate. As the experimental data are in great agreement with numerical simulations, the design can be optimized and followed by photo-acoustic characterization for a specific application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. L. Cao, J.S. White, J.S. Park, J.A. Schuller, B.M. Clemens, M.L. Brongersma, Engineering light absorption in semiconductor nanowire devices. Nat. Mater. 8, 643–647 (2009)

    Article  ADS  Google Scholar 

  2. J. Wang, M.S. Gudiksen, X. Duan, Y. Cui, C.M. Lieber, Highly polarized photoluminescence and photodetection from single indium phosphide nanowires. Science 293, 1455–1457 (2001)

    Article  ADS  Google Scholar 

  3. B. Tian, T.J. Kempa, C.M. Lieber, Single nanowire photovoltaics. Chem. Soc. Rev. 38, 16–24 (2009)

    Article  Google Scholar 

  4. O.L. Muskens, J. Gómez Rivas, R.E. Algra, E.P.A.M. Bakkers, A. Lagendijk, Design of light scattering in nanowire materials for photovoltaic applications. Nano Lett. 8, 2638–2642 (2008)

    Article  ADS  Google Scholar 

  5. J. Wallentin et al., InP nanowire array solar cells achieving 13.8 % efficiency by exceeding the ray optics limit. Science 339, 1057–1060 (2013)

    Article  ADS  Google Scholar 

  6. J. Bao, M.A. Zimmler, F. Capasso, X. Wang, Z.F. Ren, Broadband ZnO single-nanowire light-emitting diode. Nano Lett. 6, 1719–17222 (2006)

    Article  ADS  Google Scholar 

  7. M.H. Huang et al., Room-temperature ultraviolet nanowire nanolasers. Science 292, 1897–1899 (2001)

    Article  ADS  Google Scholar 

  8. Y. Ahn, J. Dunning, J. Park, Scanning photocurrent imaging and electronic band studies in silicon nanowire field effect transistors. Nano Lett. 5, 1367–1370 (2005)

    Article  ADS  Google Scholar 

  9. A.B. Greytak, C.J. Barrelet, Y. Li, C.M. Lieber, Semiconductor nanowire laser and nanowire waveguide electro-optic modulators. Appl. Phys. Lett. 87, 151103 (2005)

    Article  ADS  Google Scholar 

  10. B. Mayer et al., Lasing from individual GaAs–AlGaAs core-shell nanowires up to room temperature. Nat. Commun. 4, 2931 (2013)

    Article  Google Scholar 

  11. B. Mayer et al., Monolithically integrated high-beta nanowire lasers on silicon. Nano Lett. 16, 152–156 (2016)

    Article  ADS  Google Scholar 

  12. I. Åberg et al., A GaAs nanowire array solar cell with 15.3 % efficiency at 1 sun. IEEE J. Photovolt. 6, 185 (2016)

    Article  Google Scholar 

  13. B. Wang, P.W. Leu, Tunable and selective resonant absorption in vertical nanowires. Opt. Lett. 37, 3754–3758 (2012)

    ADS  Google Scholar 

  14. K.T. Fountaine, W.S. Whitney, H.A. Atwater, Resonant absorption in semiconductor nanowires and nanowire arrays: relating leaky waveguide modes to Bloch photonic crystal modes. J. Appl. Phys. 116, 153106 (2014)

    Article  ADS  Google Scholar 

  15. D.R. Abujetas, R. Paniagua-Domínguez, J.A. Sánchez-Gil, Unraveling the Janus role of Mie resonances and leaky/guided modes in semiconductor nanowire absorption for enhanced light harvesting. ACS Photonics 2, 921–929 (2015)

    Article  Google Scholar 

  16. K.T. Fountaine, W. Cheng, C.R. Bukowsky, H.A. Atwater, Near-unity unselective absorption in sparse InP nanowire arrays. ACS Photonics 3, 1826–1832 (2016)

    Article  Google Scholar 

  17. G. Leahu et al., Photo-acoustic spectroscopy revealing resonant absorption of self-assembled GaAs-based nanowires. Sci. Rep. 7, 2833 (2017)

    Article  ADS  Google Scholar 

  18. M.H. Alizadeh, B.M. Reinhard, Emergence of transverse spin in optical modes of semiconductor nanowires. Opt. Express 24, 8471–8479 (2016)

    Article  ADS  Google Scholar 

  19. E. Petronijevic, M. Centini, A. Belardini, G. Leahu, T. Hakkarainen, C. Sibilia, Chiral near-field manipulation in Au–GaAs hybrid hexagonal nanowires. Opt. Express 25, 14148–14157 (2017)

    Article  ADS  Google Scholar 

  20. X. Zhao, M.H. Alizadeh, B.M. Reinhard, Generating optical birefringence and chirality in silicon nanowire dimers. ACS Photonics 4, 2265–2273 (2017)

    Article  Google Scholar 

  21. G. Leahu et al., Evidence of optical circular dichroism in GaAs-based nanowires partially covered with gold. Adv. Opt. Mater. 2017, 1601063 (2017)

    Article  Google Scholar 

  22. N. Vainorius et al., Observation of type-II recombination in single wurtzite/zinc-blende GaAs heterojunction nanowires. Phys. Rev. B 89, 165423 (2014)

    Article  ADS  Google Scholar 

  23. S. Arab, M. Yao, C. Zhou, P.D. Dapkus, S.B. Cronin, Doping concentration dependence of the photoluminescence spectra of n-type GaAs nanowires. Appl. Phys. Lett. 108, 182106 (2016)

    Article  ADS  Google Scholar 

  24. S. Thunich et al., Photocurrent and photoconductance properties of a GaAs nanowire. Appl. Phys. Lett. 95, 83111 (2009)

    Article  Google Scholar 

  25. S. Zelewski et al., Photoacoustic spectroscopy of absorption edge for GaAsBi/GaAs nanowires grown on Si substrate. Appl. Phys. Lett. 109, 182106 (2016)

    Article  ADS  Google Scholar 

  26. T.V. Hakkarainen, A. Schramm, J. Mäkelä, P. Laukkanen, M. Guina, Lithography-free oxide patterns as templates for selfcatalyzed growth of highly uniform GaAs nanowires on Si(111). Nanotechnology 26, 275301 (2015)

    Article  Google Scholar 

  27. S. Zelewski et al., Photoacoustic spectroscopy of absorption edge for GaAsBi/GaAs nanowires grown on Si substrate. Appl. Phys. Lett. 109, 182106 (2016)

    Article  ADS  Google Scholar 

  28. T.V. Hakkarainen, A. Schramm, J. Mäkelä, P. Laukkanen, M. Guina, Lithography-free oxide patterns as templates for selfcatalyzed growth of highly uniform GaAs nanowires on Si(111). Nanotechnology 26, 275301 (2015)

    Article  Google Scholar 

  29. Lumerical Solutions, Inc. http://www.lumerical.com/tcad-products/fdtd/. Accessed 1 Sept 2017

  30. T. Inagaki, K. Kagami, E.T. Arakawa, Photoacoustic observation of nonradiative decay of surface plasmons in silver. Phys. Rev. B 24, 3644R (1981)

    Article  ADS  Google Scholar 

  31. T. Inagaki, K. Kagami, E.T. Arakawa, Photoacoustic study of surface plasmons in metals. Appl. Opt. 21, 949 (1982)

    Article  ADS  Google Scholar 

  32. E. Petronijevic, G. Leahu, V. Mussi, C. Sibilia, F.A. Bovino, Photoacoustic technique for the characterization of plasmonic properties of 2D periodic arrays of gold nanoholes. AIP Adv. 7, 025210 (2017)

    Article  ADS  Google Scholar 

  33. R. Li Voti et al., Photoacoustic characterization of randomly oriented silver nanowire films. Int. J. Thermophys. 36, 1342–1348 (2015)

    Article  ADS  Google Scholar 

  34. M.C. Larciprete et al., Infrared properties of randomly oriented silver nanowires. J. Appl. Phys. 112, 083503 (2012)

    Article  ADS  Google Scholar 

  35. A. Belardini et al., Chiral light intrinsically couples to extrinsic/pseudo-chiral metasurfaces made of tilted gold nanowires. Sci. Rep. 6, 31796 (2016)

    Article  ADS  Google Scholar 

  36. A. Benedetti et al., Precise detection of circular dichroism in a cluster of nano-helices by photoacoustic measurements. Sci. Rep. 7, 5257 (2017)

    Article  ADS  Google Scholar 

  37. T. Ma, M. Munidasa, A. Mandelis, Photoacoustic frequency-domain depth profilometry of surface-layer inhomogeneities: application to laser processed steels. J. Appl. Phys. 71, 6029 (1992)

    Article  ADS  Google Scholar 

  38. R. Li Voti, Optimization of transparent metal structures by genetic algorithm. Rom. Rep. Phys. 64, 446–466 (2012)

    Google Scholar 

  39. E. Petronijevic, C. Sibilia, All-optical tuning of EIT-like dielectric metasurfaces by means of chalcogenide phase change materials. Opt. Express 24, 30411–30420 (2016)

    Article  ADS  Google Scholar 

  40. G. Leahu et al., Study of thermal and optical properties of SiO 2/GaN opals by photothermal deflection technique. Opt. Quant. Electron. 39, 305–310 (2007)

    Article  Google Scholar 

Download references

Funding

Academy of Finland Project NESP (294630).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Petronijevic.

Additional information

This article is part of the selected papers presented at the 19th International Conference on Photoacoustic and Photothermal Phenomena.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petronijevic, E., Leahu, G., Belardini, A. et al. Resonant Absorption in GaAs-Based Nanowires by Means of Photo-Acoustic Spectroscopy. Int J Thermophys 39, 45 (2018). https://doi.org/10.1007/s10765-018-2365-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-018-2365-4

Keywords

Navigation