Skip to main content
Log in

Effects of an Inhomogenous Electric Field on an Evaporating Thin Film in a Microchannel

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

In this paper, heat transfer enhancement in an evaporating thin film along the wall of a microchannel under an imposed inhomogenous electrostatic field is analyzed. The mathematical model, based on the augmented Young–Laplace equation with the inhomogenous electrostatic field taken into consideration, is developed. The 2D inhomogenous electric field with the curved liquid–vapor interface is solved by the lattice Boltzmann method. Numerical solutions for the thin film characteristics are obtained for both constant wall temperature and uniform wall heat flux boundary conditions. The numerical results show that the liquid film becomes thinner and the heat transfer coefficient increases under an imposed electric field. Both of octane and water are chosen as the working mediums, and similar result about the enhancement of heat transfer on evaporating thin film by imposing electric field is obtained. It is found that applying an electric field on the evaporating thin film can enhance evaporative heat transfer in a microchannel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. F. Holm, S. Goplen, Heat transfer in the meniscus thin-film transition region. J. Heat Transf. 101, 543 (1979)

    Article  Google Scholar 

  2. B.V. Deryagin, S.V. Nerpin, N.V. Churayev, Effect of film heat transfer upon evaporation of liquids from capillaries. Bull. Rilem 29, 93 (1965)

    Google Scholar 

  3. B.V. Deryagin, Modern state of the investigation of long-range surface forces. Langmuir 3, 601 (1987)

    Article  Google Scholar 

  4. M. Potash Jr., P.C. Wayner Jr., Evaporation from a two-dimensional extended meniscus. Int. J. Heat Mass Transf. 15, 1851 (1972)

    Article  Google Scholar 

  5. P. Wayner Jr., Y. Kao, L. LaCroix, The interline heat-transfer coefficient of an evaporating wetting film. Int. J. Heat Mass Transf. 19, 487 (1976)

    Article  Google Scholar 

  6. J. Schonberg, P. Wayner Jr., An analytical solution for the integral contact line evaporative heat sink, in Proceedings of the AIAA/ASME 5th Joint Thermophysics and Heat Transfer Conference, Seattle (1990)

  7. K. Park, K.-J. Noh, K.-S. Lee, Transport phenomena in the thin-film region of a micro-channel. Int. J. Heat Mass Transf. 46, 2381 (2003)

    Article  Google Scholar 

  8. H. Wang, S.V. Garimella, J.Y. Murthy, Characteristics of an evaporating thin film in a microchannel. Int. J. Heat Mass Transf. 50, 3933 (2007)

    Article  Google Scholar 

  9. H. Wang, Z. Pan, Z. Chen, Thin-liquid-film evaporation at contact line. Front. Energy Power Eng. 3, 141 (2009)

    Article  Google Scholar 

  10. H. Wang, S.V. Garimella, J.Y. Murthy, An analytical solution for the total heat transfer in the thin-film region of an evaporating meniscus. Int. J. Heat Mass Transf. 51, 6317 (2008)

    Article  Google Scholar 

  11. H.B. Ma, P. Cheng, B. Borgmeyer, Y.X. Wang, Fluid flow and heat transfer in the evaporating thin film region. Microfluid. Nanofluid. 4, 237 (2008)

    Article  Google Scholar 

  12. L. Zheng, Y.-X. Wang, J.L. Plawsky, P.C. Wayner, Accuracy of measurements of curvature and apparent contact angle in a constrained vapor bubble heat exchanger. Int. J. Heat Mass Transf. 45, 2021 (2002)

    Article  Google Scholar 

  13. C.P. Migliaccio, H.K. Dhavaleswarapu, S.V. Garimella, Temperature measurements near the contact line of an evaporating meniscus V-groove. Int. J. Heat Mass Transf, 54, 1520 (2011)

    Article  Google Scholar 

  14. R.S.R. Gorla, J.E. Gatica, B. Ghorashi, P. In-Eure, L.W. Byrd, Heat transfer in a thin liquid film in the presence of electric field for non-isothermal interfacial condition. Int. J. Fluid Mech. Res. 29, 12 (2002)

    Article  Google Scholar 

  15. D. Landau, E. Lifshitz, Electrodynamics of Continuous Media (Pergamon press, New York, 1960)

    MATH  Google Scholar 

  16. S. Chen, G.D. Doolen, Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech. 30, 329 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  17. Y.H. Qian, D. d’Humieres, P. Lallemand, Lattice BGK models for Navier–Stokes equation. Europhys. Lett. 17, 479 (1992)

    Article  ADS  Google Scholar 

  18. X. He, N. Li, Lattice Boltzmann simulation of electrochemical systems. Comput. Phys. Commun. 129, 158 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  19. J. Zhang, D.Y. Kwok, A 2D lattice Boltzmann study on electrohydrodynamic drop deformation with the leaky dielectric theory. J. Comput. Phys. 206, 150 (2005)

    Article  ADS  Google Scholar 

  20. S. Gong, P. Cheng, X. Quan, Lattice Boltzmann simulation of droplet formation in microchannels under an electric field. Int. J. Heat Mass Transf. 53, 5863 (2010)

    Article  Google Scholar 

  21. G. Liu, L. Ma, J. Liu, Chemical Data Manual (Chemical Industry Press, Beijing, 2002)

    Google Scholar 

  22. K. Park, K.S. Lee, Flow and heat transfer characteristics of the evaporating extended meniscus in a micro-capillary channel. Int. J. Heat Mass Transf. 46, 4587 (2003)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Zhuoyao He, Dr. Kunxu Zhu and Dr. Qiang Lin for many helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiuliang Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Hu, C., Li, H. et al. Effects of an Inhomogenous Electric Field on an Evaporating Thin Film in a Microchannel. Int J Thermophys 39, 43 (2018). https://doi.org/10.1007/s10765-018-2363-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-018-2363-6

Keywords

Navigation