Skip to main content
Log in

Applicability of a 1D Analytical Model for Pulse Thermography of Laterally Heterogeneous Semitransparent Materials

  • ICPPP 19
  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Pulse thermography (PT) has proven to be a valuable non-destructive testing method to identify and quantify defects in fiber-reinforced polymers. To perform a quantitative defect characterization, the heat diffusion within the material as well as the material parameters must be known. The heterogeneous material structure of glass fiber-reinforced polymers (GFRP) as well as the semitransparency of the material for optical excitation sources of PT is still challenging. For homogeneous semitransparent materials, 1D analytical models describing the temperature distribution are available. Here, we present an analytical approach to model PT for laterally inhomogeneous semitransparent materials. We show the validity of the model by considering different configurations of the optical heating source, the IR camera, and the differently coated GFRP sample. The model considers the lateral inhomogeneity of the semitransparency by an additional absorption coefficient. It includes additional effects such as thermal losses at the samples surfaces, multilayer systems with thermal contact resistance, and a finite duration of the heating pulse. By using a sufficient complexity of the analytical model, similar values of the material parameters were found for all six investigated configurations by numerical fitting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. C. Maierhofer, P. Myrach, M. Reischel, H. Steinfurth, M. Röllig, M. Kunert, Compos. Part B Eng. 57, 35 (2014). https://doi.org/10.1016/j.compositesb.2013.09.036

  2. W.P. Winfree, J.N. Zalameda, P.A. Howell, K.E. Cramer, Thermosense: Thermal Infrared Applications XXXVIII; 17–21 April 2016. in Proceedings of SPIE, Baltimore, United States, 2016, p. 98610N, 1–14

  3. C. Maierhofer, R. Krankenhagen, M. Röllig, S. Unnikrishnakurup, C. Monte, A. Adibekyan, B. Gutschwager, L. Knazowicka, A. Blahut, M. Gower, M. Lodeiro, G. Baker, A. Aktas, in TM—Technisches Messen 85(1), 13–27 (2018)

  4. W.J. Parker, R.J. Jenkins, C.P. Butler, G.L. Abbott, J. Appl. Phys. 32, 1679 (1961). https://doi.org/10.1063/1.1728417

    Article  ADS  Google Scholar 

  5. H.S. Carslaw, J.C. Jaeger, Conduction of Heat in Solids (Clarendon Press, Oxford, 1959)

    MATH  Google Scholar 

  6. A. Salazar, A. Mendioroz, E. Apiñaniz, C. Pradere, F. Noël, J.-C. Batsale, Meas. Sci. Technol. 25, 035604 (2014)

    Article  ADS  Google Scholar 

  7. J.R. Howell, M.P. Menguc, R. Siegel, Thermal Radiation Heat Transfer (CRC Press, Boca Raton, 2010)

    Book  Google Scholar 

  8. D. Maillet, S. André, J.-C. Batsale, A. Degiovanni, C. Moyne, Thermal Quadrupoles (Wiley, Chichester, 2000)

    MATH  Google Scholar 

  9. S.J. Altenburg, R. Krankenhagen, F. Bavendiek, AIP Conf. Proc. 1806, 100004 (2017). https://doi.org/10.1063/1.4974669

    Article  Google Scholar 

  10. S.J. Altenburg, H. Weber, R. Krankenhagen, QIRT 15(1), 1 (2018). https://doi.org/10.1080/17686733.2017.1331655

    Article  Google Scholar 

  11. A. Salazar, R. Fuente, E. Apiñaniz, A. Mendioroz, R. Celorrio, J. Appl. Phys. 110, 033516 (2011). https://doi.org/10.1063/1.3614525

    Article  ADS  Google Scholar 

  12. J. Ravi, Y. Lu, S. Longuemart, S. Paoloni, H. Pfeiffer, J. Thoen, C. Glorieux, J. Appl. Phys. 97, 014701 (2005). https://doi.org/10.1063/1.1821635

    Article  ADS  Google Scholar 

  13. P. Martínez-Torres, A. Mandelis, J.J. Alvarado-Gil, J. Appl. Phys. 108, 054902 (2010). https://doi.org/10.1063/1.3475712

    Article  ADS  Google Scholar 

  14. W.P. Winfree, K.E. Cramer, J.N. Zalameda, P.A. Howell, in 42nd Annual Review of Progress in Quantitative Nondestructive Evaluation: Incorporating the 6th European–American Workshop on Reliability of NDE (2016)

  15. G.T. GmbH, Nanolam 140 Laminat. http://www.carbonscout-shop.de/img/Nanolam_140_Laminat_03.02.2015.pdf. Accessed 10 Oct 2017

  16. J. Abate, W. Whitt, INFORMS J. Comput. 18, 408 (2006)

    Article  MathSciNet  Google Scholar 

  17. J.C. Lagarias, J.A. Reeds, M.H. Wright, P.E. Wright, SIAM J. Optim. 9, 112 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Bernegger.

Additional information

This article is part of the selected papers presented at the 19th International Conference on Photoacoustic and Photothermal Phenomena.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bernegger, R., Altenburg, S.J., Röllig, M. et al. Applicability of a 1D Analytical Model for Pulse Thermography of Laterally Heterogeneous Semitransparent Materials. Int J Thermophys 39, 39 (2018). https://doi.org/10.1007/s10765-018-2362-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-018-2362-7

Keywords

Navigation