In situ Investigation of Microwave Impacts on Ethylene Glycol Aqueous Solutions

Abstract

Recently, the in-situ IMPACT of MICROWAVES on the behavior of aqueous solutions have been reported. The results, including surface tension and in situ bubble formation, indicated a nonthermal effect of microwave on solutions. To clarify the role of fluid properties on such effects, this study applied microwave to ethylene glycol (EG) aqueous solutions at different concentrations. The surface tension, bubble size and convection were monitored during and after microwave irradiation. It was found that surface tension reduction was maximized in the medium EG content, 20 to 60 vol.%. The size of bubble formed during microwave was reduced by the addition of EG. The convection was also reduced by EG. The obtained data indicated that the dielectric constant and intermolecular bonds were the main underlining principles for microwave effects. The new insights can be used to provide practical ways to manipulate microwave effects on aqueous solutions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    P. Goncalo, C. Roussel, J.M. Mélot, J. Vébrel, J. Chem. Soc. Perkin Trans. 2, 2111 (1999)

    Article  Google Scholar 

  2. 2.

    R. Laurent, A. Laporterie, J. Dubac, J. Berlan, S. Lefeuvre, M. Audhuy, J. Org. Chem. 57, 7099 (1992)

    Article  Google Scholar 

  3. 3.

    K.R. Birdwhistell, B.E. Schulz, P.M. Dizon, Inorg. Chem. Commun. 26, 69 (2012)

    Article  Google Scholar 

  4. 4.

    N. Kuhnert, Angew. Chemie Int. Ed. 41, 1863 (2002)

    Article  Google Scholar 

  5. 5.

    C.O. Kappe, Chem. Soc. Rev. 37, 1127 (2008)

    Article  Google Scholar 

  6. 6.

    P. Lidström, J. Tierney, B. Wathey, J. Westman, Tetrahedron 57, 9225 (2001)

    Article  Google Scholar 

  7. 7.

    Y. Asakuma, R. Nakata, M. Asada, Y. Kanazawa, C. Phan, Int. J. Heat Mass Transf. 103, 13 (2016)

    Article  Google Scholar 

  8. 8.

    M. Asada, Y. Kanazawa, Y. Asakuma, I. Honda, C. Phan, Chem. Eng. Res. Des. 101, 107 (2015)

    Article  Google Scholar 

  9. 9.

    H. Parmar, M. Asada, Y. Kanazawa, Y. Asakuma, C.M. Phan, V. Pareek, G.M. Evans, Langmuir 30, 763 (2014)

    Article  Google Scholar 

  10. 10.

    C.O. Kappe, Angew. Chemie Int. Ed. 43, 6250 (2004)

    Article  Google Scholar 

  11. 11.

    B. L. Hayes, Microwave Synthesis: Chemistry at the Speed of Light (CEM Pub, 2002)

  12. 12.

    Y. Tsukahara, A. Higashi, T. Yamauchi, T. Nakamura, M. Yasuda, A. Baba, Y. Wada, J. Phys. Chem. C 114, 8965 (2010)

    Article  Google Scholar 

  13. 13.

    A.-T. Chai, N. Zhang, Exp. Heat Transf. 11, 187 (1998)

    ADS  Article  Google Scholar 

  14. 14.

    Y. Asakuma, T. Munenaga, R. Nakata, Heat Mass Transf. 52, 1833 (2016)

    ADS  Article  Google Scholar 

  15. 15.

    Y.Y. Zuo, M. Ding, A. Bateni, M. Hoorfar, A.W. Neumann, Colloids Surf. A 250, 233 (2004)

    Article  Google Scholar 

  16. 16.

    M. Zahn, Y. Ohki, D.B. Fenneman, R.J. Gripshover, V.H. Gehman, Proc. IEEE 74, 1182 (1986)

    Article  Google Scholar 

  17. 17.

    F. Perakis, L. De Marco, A. Shalit, F. Tang, Z.R. Kann, T.D. Kühne, R. Torre, M. Bonn, Y. Nagata, Chem. Rev. 116, 7590 (2016)

    Article  Google Scholar 

  18. 18.

    V.X. Nguyen, K.J. Stebe, Phys. Rev. Lett. 88, 164501 (2002)

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yusuke Asakuma.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Asakuma, Y., Matsumura, S., Asada, M. et al. In situ Investigation of Microwave Impacts on Ethylene Glycol Aqueous Solutions. Int J Thermophys 39, 21 (2018). https://doi.org/10.1007/s10765-017-2343-2

Download citation

Keywords

  • Bubble formation
  • Microwave
  • Surface tension