Skip to main content
Log in

Comparative Investigation on the Heat Transfer Characteristics of Gaseous \(\hbox {CO}_{2}\) and Gaseous Water Flowing Through a Single Granite Fracture

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

\(\hbox {CO}_{2}\) and water are two commonly employed heat transmission fluids in several fields. Their temperature and pressure determine their phase states, thus affecting the heat transfer performance of the water/\(\hbox {CO}_{2}\). The heat transfer characteristics of gaseous \(\hbox {CO}_{2}\) and gaseous water flowing through fractured hot dry rock still need a great deal of investigation, in order to understand and evaluate the heat extraction in enhanced geothermal systems. In this work, we develop a 2D numerical model to compare the heat transfer performance of gaseous \(\hbox {CO}_{2}\) and gaseous water flowing through a single fracture aperture of 0.2 mm in a \(\upphi 50\,\times 50\hbox { mm}\) cylindrical granite sample with a confining temperature of \(200\,^{\circ }\hbox {C}\) under different inlet mass flow rates. Our results indicate that: (1) the final outlet temperatures of the fluid are very close to the outer surface temperature under low inlet mass flow rate, regardless of the sample length. (2) Both the temperature of the fluid (gaseous \(\hbox {CO}_{2}\)/gaseous water) and inner surface temperature rise sharply at the inlet, and the inner surface temperature is always higher than the fluid temperature. However, their temperature difference becomes increasingly small. (3) Both the overall heat transfer coefficient (OHTC) and local heat transfer coefficient (LHTC) of gaseous \(\hbox {CO}_{2}\) and gaseous water increase with increasing inlet mass flow rates. (4) Both the OHTC and LHTC of gaseous \(\hbox {CO}_{2}\) are lower than those of gaseous water under the same conditions; therefore, the heat mining performance of gaseous water is superior to gaseous \(\hbox {CO}_{2}\) under high temperature and low pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. D. Duchane, B. Geoth, Resour. Council 19, 83–88 (1990). http://pubs.geothermal-library.org/lib/grc/7000408.pdf

  2. Y.G. Liu, X. Zhu, G.F. Yue, W.J. Lin, Y.J. He, G.L. Wang, J. Groundw. Sci. Eng. 3, 170–175 (2015)

    Google Scholar 

  3. R. Rieberer, H. Halozan, in International Refrigeration and Air Conditioning Conference Paper 400 (1998). http://docs.lib.purdue.edu/iracc/400

  4. J.T. Kwon, C.K. Lee, D.S. Baek, Y.C. Kwon, J. Korea Acad. Ind. Coop. Soc. 14, 5317–5322 (2013). doi:10.5762/KAIS.2013.14.11.5317

    Article  Google Scholar 

  5. V. Bespalov, V. Bespalov, D. Melnikov, EPJ Web Conf. 110, 01007 (2016). doi:10.1051/epjconf/201611001007

    Article  Google Scholar 

  6. Y.B. Liang, D.F. Che, Y.B. Kang, Heat Mass Transf. 43, 677–686 (2007)

    Article  ADS  Google Scholar 

  7. M. Poirier, Dry. Technol. 25, 327–334 (2007)

    Article  Google Scholar 

  8. F. Luo, R.N. Xu, P.X. Jiang, Energy 64, 307–322 (2014)

    Article  Google Scholar 

  9. J.E. Mock, J.W. Tester, P.M. Wright, Annu. Rev. Energy Environ. 22, 305–56 (1997)

    Article  Google Scholar 

  10. M. Tarawneh, A.A. Alshqirate, K. Khasawneh, M. Hammad, Heat Transf. Asian Res. 42, 473 (2013)

    Article  Google Scholar 

  11. L. Shui, J. Gao, J. Liu, X.U. Liang, X. Shi, J. Xi, Jiaotong Univ. Chin. 46, 6–11 (2012)

    Google Scholar 

  12. C.W. Chen, T.Y. Lin, C.Y. Yang, S.G. Kandlikar, in Proceedings of the ASME 2011, 9th ICNMM (2011) June 19–22 Edmonton, Alberta, Canada

  13. M.H. Ge, Tianjin Univ. [in Chinese] (2014)

  14. D. Fang, Shandong Univ. [in Chinese] (2014)

  15. K. Pruess, in Proeedings of New Zealand Geothermal Workshop 2007, Auckland, New Zealand (2007)

  16. J.W. Pritchett, GRC Trans. 33, 235 (2009)

    Google Scholar 

  17. S.H. Yoon, E.S. Cho, Y.W. Hwang, M.S. Kim, K. Min, Y. Kim, Int. J. Refrig. 27, 111 (2004)

    Article  Google Scholar 

  18. I.S. Lim, R.S. Tankin, M.C. Yuen, J. Heat Transf. 106, 425–432 (1984). [United States]

    Article  Google Scholar 

  19. T. Yamada, N. Haraguchi, E. Hihara, J.F. Wang, Therm. Sci. Eng. 13, 93–94 (2005)

    Google Scholar 

  20. D.E. White, L.I.P. Muffler, A.H. Truesdell, Econ. Geol. 66, 75–97 (1971)

    Article  Google Scholar 

  21. J. Pettersen, R. Rieberer, S.T. Munkejord, Tech. Rep. (2000)

  22. B. Bai, Y.Y. He, X.C. Li, S.B. Hu, X.X. Huang, J. Li, J.L. Zhu, Environ. Earth. Sci. 75, 1460 (2016). doi:10.1007/s12665-016-6249-2

    Article  Google Scholar 

  23. L. Zhang, R.N. Xu, P.X. Jiang, J. Eng. Thermophys. 37, 1500–1505 (2016). [in Chinese]

    Google Scholar 

  24. Y.Y. He, B. Bai, S.B. Hu, X.C. Li, Comput. Geotech. 80, 312 (2016)

    Article  Google Scholar 

  25. W.J. Cao, J.L. Chen, F.M. Jiang, J. Jilin Univ. Earth Sci. Ed. 45, 1180–1188 (2015). [in Chinese]

    Google Scholar 

  26. E.W. Lemmon, M.L. Huber, M.O. Mclinden, NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP. 9.0 (2010)

  27. B. Cui, Chongqing Univ. (2014) [in Chinese]

  28. B. Bai, Y.Y. He, X.C. Li, J. Li, X.X. Huang, J.L. Zhu, Appl. Therm. Eng. (2017). doi:10.1016/j.applthermaleng.2017.01.020

    Article  Google Scholar 

  29. A.J. Chapman, 4th edn. (Macmillan Publishing Company, New York, 1984)

  30. Z. Zhao, Comput. Geotech. 59, 105 (2014). doi:10.1016/j.compgeo.2014.03.002

    Article  Google Scholar 

  31. J. Zhao, C.P. Tso, Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 30, 633–641 (1993). doi:10.1016/0148-9062(93)91223-6

    Article  Google Scholar 

  32. H.S. Carslaw, J.C. Jaeger, 2nd edn. (Oxford, 1959)

  33. X.X. Huang, J.L. Zhu, J. Li, B. Bai, G.W. Zhang, Int. Commun. Heat Mass 75, 78 (2016). doi:10.1016/j.icheatmasstransfer.2016.03.027

    Article  Google Scholar 

  34. G.W. Zhang, in Proceedings World Geothermal Congress 2015, April 19–25, Melbourne, Australia (2015)

Download references

Acknowledgements

The authors gratefully acknowledge the support of this work by the National Natural Science Foundation of China (Grant No. 41672252).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing Bai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Y., Bai, B. & Li, X. Comparative Investigation on the Heat Transfer Characteristics of Gaseous \(\hbox {CO}_{2}\) and Gaseous Water Flowing Through a Single Granite Fracture. Int J Thermophys 38, 170 (2017). https://doi.org/10.1007/s10765-017-2304-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-017-2304-9

Keywords

Navigation