Abstract
A new method is developed for correlating the static dielectric constant of polar fluids over wide ranges of conditions where few experimental data exist. Molecular dynamics simulations are used to establish the temperature and density dependence of the Kirkwood g-factor, and also the functional form for the increase of the effective dipole moment with density. Most parameters in the model are obtained entirely from simulation; a single proportionality constant is adjusted to obtain agreement with the limited experimental data. The method is applied to hydrogen sulfide (\(\hbox {H}_{2}\hbox {S}\)) and sulfur dioxide \((\hbox {SO}_{2})\), both of which are important in geochemistry but have only a few dielectric data available. The resulting correlations agree well with the available liquid data, obey physical boundary conditions at low density and at high temperature, and interpolate in density and temperature in a physically reasonable manner. In addition, we present a more conventional correlation for the dielectric constant of sulfur hexafluoride, \(\hbox {SF}_{6}\), where more data are available.
Similar content being viewed by others
Change history
11 September 2017
The original version of this article unfortunately contained an error. The conversion from Debye units for the dipole moment to SI units was printed incorrectly on page 4 and in the footnote to Table 3.
References
A.H. Harvey, E.W. Lemmon, Int. J. Thermophys. 26, 31 (2005)
A.H. Harvey, J.M. Prausnitz, J. Solut. Chem. 16, 857 (1987)
D. Pan, L. Spanu, B. Harrison, D.A. Sverjensky, G. Galli, Proc. Natl. Acad. Sci. 110, 6646 (2013)
D.A. Sverjensky, B. Harrison, D. Azzolini, Geochim. Cosmochim. Acta 129, 125 (2014)
M.E. Galvez, C.E. Manning, J.A.D. Connolly, D. Rumble, Earth Planet. Sci. Lett. 430, 486 (2015)
M.E. Galvez, J.A.D. Connolly, C.E. Manning, Nature 539, 420 (2016)
R.D. Mountain, A.H. Harvey, J. Solut. Chem. 44, 2179 (2015)
D.P. Fernández, A.R.H. Goodwin, E.W. Lemmon, J.M.H. Levelt Sengers, R.C. Williams, J. Phys. Chem. Ref. Data 26, 1125 (1997)
J.G. Kirkwood, J. Chem. Phys. 7, 911 (1939)
H. Liu, Y. Wang, J.M. Bowman, J. Phys. Chem. B 120, 1735 (2016)
E.W. Lemmon, R. Span, J. Chem. Eng. Data 51, 785 (2006)
U. Hohm, J. Mol. Struct. 1054–1055, 282 (2013)
A.J. Russell, M.A. Spackman, Mol. Phys. 90, 251 (1997)
D.M. Bishop, L.M. Cheung, J. Phys. Chem. Ref. Data 11, 119 (1982)
R. Viswanathan, T.R. Dyke, J. Mol. Spectrosc. 103, 231 (1984)
D. Patel, D. Margolese, T.R. Dyke, J. Chem. Phys. 70, 2740 (1979)
M.S. Shah, M. Tsapatsis, J.I. Siepmann, J. Phys. Chem. B 119, 7041 (2015)
M.H. Ketko, G. Kamath, J.J. Potoff, J. Phys. Chem. B 115, 4949 (2011)
M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids (Clarendon Press, Oxford, 1987)
N.S. Martys, R.D. Mountain, Phys. Rev. E 59, 3733 (1999)
D.J. Evans, S. Murad, Mol. Phys. 34, 327 (1977)
G.J. Martina, M.L. Klein, M. Tuckerman, J. Chem. Phys. 97, 2635 (1992)
D. Frenkel, B. Smit, Understanding Molecular Simulation, 2nd edn. (Academic Press, New York, 2002)
R.V. Hogg, J.W. McKean, A.T. Craig, Introduction to Mathematical Statistics, 6th edn. (Pearson Prentice Hall, Upper Saddle River, 2005)
J.D. Kemp, G.H. Denison, J. Am. Chem. Soc. 55, 251 (1933)
C.P. Smyth, C.S. Hitchcock, J. Am. Chem. Soc. 56, 1084 (1934)
W.G. Bickford, Iowa State Coll. J. Sci. 11, 35 (1936)
S. Havrillak, R.W. Swenson, R.H. Cole, J. Chem. Phys. 23, 134 (1955)
W.D. Coolidge, Ann. Physik 305, 125 (1899)
H. Schlundt, J. Phys. Chem. 5, 503 (1901)
P. Eversheim, Ann. Physik 317, 539 (1902)
R.J.W. Le Fèvre, I.G. Ross, J. Chem. Soc. 283 (1950)
J.D. Nickerson, R. McIntosh, Can. J. Chem. 35, 1325 (1957)
J. Obriot, J. Ge, T.K. Bose, J.-M. St-Arnaud, Fluid Phase Equilib. 86, 315 (1993)
T. Kita, Y. Uosaki, T. Moriyoshi, Ber. Bunsenges. Phys. Chem. 98, 112 (1994)
C. Hosticka, T.K. Bose, J. Chem. Phys. 60, 1318 (1974)
C. Guder, W. Wagner, J. Phys. Chem. Ref. Data 38, 33 (2009)
Acknowledgements
We are grateful to Dr. Thomas Wagner and especially to Dr. Matthieu Galvez for informing us of the geochemical need for models of the dielectric constants of \(\hbox {H}_{2}\hbox {S}\) and \(\hbox {SO}_{2}\).
Author information
Authors and Affiliations
Corresponding author
Additional information
The original article has been corrected: The conversion from Debye units for the dipole moment to SI units was printed incorrectly.
Contribution of the National Institute of Standards and Technology, not subject to copyright in the United States.
Rights and permissions
About this article
Cite this article
Harvey, A.H., Mountain, R.D. Correlations for the Dielectric Constants of \(\hbox {H}_{2}\hbox {S}\), \(\hbox {SO}_{2}\), and \(\hbox {SF}_{6}\) . Int J Thermophys 38, 147 (2017). https://doi.org/10.1007/s10765-017-2279-6
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10765-017-2279-6