Skip to main content
Log in

Correlations for the Dielectric Constants of \(\hbox {H}_{2}\hbox {S}\), \(\hbox {SO}_{2}\), and \(\hbox {SF}_{6}\)

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

A Publisher's Erratum to this article was published on 11 September 2017

This article has been updated

Abstract

A new method is developed for correlating the static dielectric constant of polar fluids over wide ranges of conditions where few experimental data exist. Molecular dynamics simulations are used to establish the temperature and density dependence of the Kirkwood g-factor, and also the functional form for the increase of the effective dipole moment with density. Most parameters in the model are obtained entirely from simulation; a single proportionality constant is adjusted to obtain agreement with the limited experimental data. The method is applied to hydrogen sulfide (\(\hbox {H}_{2}\hbox {S}\)) and sulfur dioxide \((\hbox {SO}_{2})\), both of which are important in geochemistry but have only a few dielectric data available. The resulting correlations agree well with the available liquid data, obey physical boundary conditions at low density and at high temperature, and interpolate in density and temperature in a physically reasonable manner. In addition, we present a more conventional correlation for the dielectric constant of sulfur hexafluoride, \(\hbox {SF}_{6}\), where more data are available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Change history

  • 11 September 2017

    The original version of this article unfortunately contained an error. The conversion from Debye units for the dipole moment to SI units was printed incorrectly on page 4 and in the footnote to Table 3.

References

  1. A.H. Harvey, E.W. Lemmon, Int. J. Thermophys. 26, 31 (2005)

    Article  ADS  Google Scholar 

  2. A.H. Harvey, J.M. Prausnitz, J. Solut. Chem. 16, 857 (1987)

    Article  Google Scholar 

  3. D. Pan, L. Spanu, B. Harrison, D.A. Sverjensky, G. Galli, Proc. Natl. Acad. Sci. 110, 6646 (2013)

    Article  ADS  Google Scholar 

  4. D.A. Sverjensky, B. Harrison, D. Azzolini, Geochim. Cosmochim. Acta 129, 125 (2014)

    Article  ADS  Google Scholar 

  5. M.E. Galvez, C.E. Manning, J.A.D. Connolly, D. Rumble, Earth Planet. Sci. Lett. 430, 486 (2015)

    Article  ADS  Google Scholar 

  6. M.E. Galvez, J.A.D. Connolly, C.E. Manning, Nature 539, 420 (2016)

    Article  ADS  Google Scholar 

  7. R.D. Mountain, A.H. Harvey, J. Solut. Chem. 44, 2179 (2015)

    Article  Google Scholar 

  8. D.P. Fernández, A.R.H. Goodwin, E.W. Lemmon, J.M.H. Levelt Sengers, R.C. Williams, J. Phys. Chem. Ref. Data 26, 1125 (1997)

    Article  ADS  Google Scholar 

  9. J.G. Kirkwood, J. Chem. Phys. 7, 911 (1939)

    Article  ADS  Google Scholar 

  10. H. Liu, Y. Wang, J.M. Bowman, J. Phys. Chem. B 120, 1735 (2016)

    Article  Google Scholar 

  11. E.W. Lemmon, R. Span, J. Chem. Eng. Data 51, 785 (2006)

    Article  Google Scholar 

  12. U. Hohm, J. Mol. Struct. 1054–1055, 282 (2013)

    Article  ADS  Google Scholar 

  13. A.J. Russell, M.A. Spackman, Mol. Phys. 90, 251 (1997)

    Article  ADS  Google Scholar 

  14. D.M. Bishop, L.M. Cheung, J. Phys. Chem. Ref. Data 11, 119 (1982)

    Article  ADS  Google Scholar 

  15. R. Viswanathan, T.R. Dyke, J. Mol. Spectrosc. 103, 231 (1984)

    Article  ADS  Google Scholar 

  16. D. Patel, D. Margolese, T.R. Dyke, J. Chem. Phys. 70, 2740 (1979)

    Article  ADS  Google Scholar 

  17. M.S. Shah, M. Tsapatsis, J.I. Siepmann, J. Phys. Chem. B 119, 7041 (2015)

    Article  Google Scholar 

  18. M.H. Ketko, G. Kamath, J.J. Potoff, J. Phys. Chem. B 115, 4949 (2011)

    Article  Google Scholar 

  19. M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids (Clarendon Press, Oxford, 1987)

    MATH  Google Scholar 

  20. N.S. Martys, R.D. Mountain, Phys. Rev. E 59, 3733 (1999)

    Article  ADS  Google Scholar 

  21. D.J. Evans, S. Murad, Mol. Phys. 34, 327 (1977)

    Article  ADS  Google Scholar 

  22. G.J. Martina, M.L. Klein, M. Tuckerman, J. Chem. Phys. 97, 2635 (1992)

    Article  ADS  Google Scholar 

  23. D. Frenkel, B. Smit, Understanding Molecular Simulation, 2nd edn. (Academic Press, New York, 2002)

    MATH  Google Scholar 

  24. R.V. Hogg, J.W. McKean, A.T. Craig, Introduction to Mathematical Statistics, 6th edn. (Pearson Prentice Hall, Upper Saddle River, 2005)

    Google Scholar 

  25. J.D. Kemp, G.H. Denison, J. Am. Chem. Soc. 55, 251 (1933)

    Article  Google Scholar 

  26. C.P. Smyth, C.S. Hitchcock, J. Am. Chem. Soc. 56, 1084 (1934)

    Article  Google Scholar 

  27. W.G. Bickford, Iowa State Coll. J. Sci. 11, 35 (1936)

    Google Scholar 

  28. S. Havrillak, R.W. Swenson, R.H. Cole, J. Chem. Phys. 23, 134 (1955)

    Article  ADS  Google Scholar 

  29. W.D. Coolidge, Ann. Physik 305, 125 (1899)

    Article  ADS  Google Scholar 

  30. H. Schlundt, J. Phys. Chem. 5, 503 (1901)

    Article  Google Scholar 

  31. P. Eversheim, Ann. Physik 317, 539 (1902)

    Article  ADS  Google Scholar 

  32. R.J.W. Le Fèvre, I.G. Ross, J. Chem. Soc. 283 (1950)

  33. J.D. Nickerson, R. McIntosh, Can. J. Chem. 35, 1325 (1957)

    Article  Google Scholar 

  34. J. Obriot, J. Ge, T.K. Bose, J.-M. St-Arnaud, Fluid Phase Equilib. 86, 315 (1993)

    Article  Google Scholar 

  35. T. Kita, Y. Uosaki, T. Moriyoshi, Ber. Bunsenges. Phys. Chem. 98, 112 (1994)

    Article  Google Scholar 

  36. C. Hosticka, T.K. Bose, J. Chem. Phys. 60, 1318 (1974)

    Article  ADS  Google Scholar 

  37. C. Guder, W. Wagner, J. Phys. Chem. Ref. Data 38, 33 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. Thomas Wagner and especially to Dr. Matthieu Galvez for informing us of the geochemical need for models of the dielectric constants of \(\hbox {H}_{2}\hbox {S}\) and \(\hbox {SO}_{2}\).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allan H. Harvey.

Additional information

The original article has been corrected: The conversion from Debye units for the dipole moment to SI units was printed incorrectly.

Contribution of the National Institute of Standards and Technology, not subject to copyright in the United States.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harvey, A.H., Mountain, R.D. Correlations for the Dielectric Constants of \(\hbox {H}_{2}\hbox {S}\), \(\hbox {SO}_{2}\), and \(\hbox {SF}_{6}\) . Int J Thermophys 38, 147 (2017). https://doi.org/10.1007/s10765-017-2279-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-017-2279-6

Keywords

Navigation