Skip to main content

Measurements of Thermal Conductivity and Thermal Diffusivity of Hen Egg-White Lysozyme Crystals and Its Solution Using the Transient Short Hot Wire Method

Abstract

Protein crystals are an essentially important biological sample to advance the analysis of X-ray structure, but their thermophysical properties, especially thermal conductivity and thermal diffusivity, have not been studied sufficiently. This current situation can be attributed to various kinds of technical problems; e.g., the fragility of protein crystals and the difficulty of nucleation control. Ideally speaking, protein crystallization should be carried out under a “containerless condition” to eliminate any mechanical distortion of the crystals from the walls. To realize the condition, we have developed an original crystallization method by means of the magneto-Archimedes effect. In this paper, a transient short hot wire method was combined with the technique of magneto-Archimedes effect to realize simultaneous measurement of thermal conductivity and thermal diffusivity of hen egg-white lysozyme (HEWL) crystals. As the results, thermal conductivity and thermal diffusivity of HEWL crystals were found to be 0.410–0.438 \(\hbox {W}\cdot \hbox {m}^{-1}\cdot \hbox {K}^{-1}\) and 3.77–\(5.18\times 10^{-8}\,\hbox {m}^{2}\cdot \hbox {s}^{-1}\), respectively. We clarified by the crystallizing process of HEWL that the crystals were magnetically levitated at the air–liquid interface and the short hot wire was completely buried into them as the crystals grew. We also measured the HEWL solution by the same methods. The thermal conductivity of the solution had almost the same value as that of water and had little dependency on the concentration of HEWL, but the thermal diffusivity was unclear.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. T.M. Bergfors, in IUL Biotechnology Series, (International University Line, 2009), p. 363 (ISBN: 978-0-9720774-4-6)

  2. B. Lorber, R. Giegé, J. Cryst. Growth 168, 204 (1996)

    ADS  Article  Google Scholar 

  3. N.E. Chayen, Protein Eng. 9, 927 (1996)

    Article  Google Scholar 

  4. H. Adachi, T. Watanabe, M. Yoshimura, Y. Mori, T. Sasaki, Jpn. J. Appl. Phys. 41, L 726 (2002)

    ADS  Article  Google Scholar 

  5. H. Adachi, K. Takano, M. Morikawa, S. Kanaya, M. Yoshimura, Y. Mori, T. Sasaki, Acta Cryst. D 59, 194 (2002)

    Article  Google Scholar 

  6. H. Adachi, A. Niino, H. Matsumura, K. Takano, T. Inoue, Y. Mori, T. Sasaki, Jpn. J. Appl. Phys. 43, 6264 (2004)

    ADS  Article  Google Scholar 

  7. S.K. Chung, E.H. Trinh, J. Cryst. Growth 194, 384 (1998)

    ADS  Article  Google Scholar 

  8. S. Santesson, E.S. Cedergren-Zeppezauer, T. Johansson, T. Laurell, J. Nilsson, S. Nilsson, Anal. Chem. 75, 1733 (2003)

    Article  Google Scholar 

  9. W.K. Rhim, S.K. Chung, J. Cryst. Growth 110, 293 (1991)

    ADS  Article  Google Scholar 

  10. S. Maki, Y. Oda, M. Ataka, J. Cryst. Growth 261, 557 (2004)

    ADS  Article  Google Scholar 

  11. M. Ataka, S. Maki, Jpn. Patent 4,273,222, 2002

  12. S. Maki, Biomed. Soft Comput. Hum. Sci. 19, 7 (2014)

    Google Scholar 

  13. M. Fujii, X. Zhang, N. Imaishi, S. Fujiwara, T. Sakamoto, Int. J. Thermophys. 18, 327 (1997)

    ADS  Article  Google Scholar 

  14. T. Tomimura, S. Maki, X. Zhang, M. Fujii, Jpn. J. Thermophys. Prop. 15, 9 (2001)

    Article  Google Scholar 

  15. X. Zhang, S. Mikeda, H. Wicaksono, S. Fujiwara, and M. Fujii, in Proceedings of the 6th Asian Thermophysical Properties Conference, vol. 1, p. 36 (2001)

  16. X. Zhang, H. Wicaksono, S. Fujiwara, M. Fujii, High Temp. High Press. 34, 617 (2002)

    Article  Google Scholar 

  17. Y. Ikezoe, N. Hirota, J. Nakagawa, K. Kitazawa, Nature 393, 749 (1998)

    ADS  Article  Google Scholar 

  18. M. Faraday, Philos. Mag. 31, 401 (1847)

    Google Scholar 

  19. T. Kimura, S. Mamada, M. Yamato, Chem. Lett. 29, 1294 (2000)

    Article  Google Scholar 

  20. A.T. Catherall, L. Eaves, P.J. King, S.R. Booth, Nature 422, 579 (2003)

    ADS  Article  Google Scholar 

  21. N. Hirota, M. Kurashige, M. Iwasaka, M. Ikehata, H. Uetake, T. Takayama, H. Nakamura, Y. Ikezoe, S. Ueno, K. Kitazawa, Physica B 346, 267 (2004)

    ADS  Article  Google Scholar 

  22. P. López-Alcaraz, A.T. Catherall, R.J. Hill, M.C. Leaper, M.R. Swift, P.J. King, Eur. Phys. J. E 24, 145 (2007)

    Article  Google Scholar 

  23. S. Hayashi, F. Mishima, Y. Akiyama, S. Nishijima, I.E.E.E. Trans, Appl. Supercond. 20, 945 (2010)

    ADS  Article  Google Scholar 

  24. S. Makis, N. Hirota, J. Food Eng. 120C, 31 (2014)

    Article  Google Scholar 

  25. S. Maki, Y. Tanimoto, C. Udagawa, S. Morimoto, M. Hagiwara, Jpn. J. Appl. Phys. 55, 035505-1 (2016)

    ADS  Article  Google Scholar 

  26. http://www.magneto-science.jp/

  27. Japan Society of Thermophysical Properties, Thermophysical Properties Handbook (Yokendo, Tokyo, 2008)

    Google Scholar 

  28. T. Okabe, J. Okajima, A. Komiya, I. Takahashi, S. Maruyama, Trans. JSME B 79, 2264 (2013)

    Article  Google Scholar 

  29. J. Liu, W.-J. Yang, J. Thermophys. Heat Transf. 6, 531 (1992)

    Article  Google Scholar 

  30. H. Adachi, K. Takano, M. Yoshimura, Y. Mori, T. Sasaki, Jpn. J. Appl. Phys. 41, L1025–L1027 (2002)

    ADS  Article  Google Scholar 

  31. M. Yaoi, H. Adachi, K. Takano, H. Matsumura, T. Inoue, Y. Mori, T. Sasaki, Jpn. J. Appl. Phys. 43, L686–L688 (2004)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

This research was supported by MEXT/JSPS, KAKENHI, Grant Number JP15K04669 and JP17K06215. In addition, we were supported by the Osaka Ohtani University Research Fund (Pharmaceutical Sciences). This work was carried out at the Center for Advanced High Magnetic Field Science in Osaka University under the Visiting Researcher’s Program of the Institute for Solid State Physics, the University of Tokyo. The superconducting magnet in this work belongs to Dr. Satoshi Tomita, Quantum Material Science Laboratory, Graduate School of Material Science, Nara Institute of Science and Technology. We would like to express our deepest gratitude to Professor Emeritus Fujii of Kyushu University, who was a former professor of Maki and Fujiwara, for his great and heartfelt research guidance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seiji Fujiwara.

Additional information

Selected paper from Asian Thermophysical Properties Conference.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fujiwara, S., Maki, S., Maekawa, R. et al. Measurements of Thermal Conductivity and Thermal Diffusivity of Hen Egg-White Lysozyme Crystals and Its Solution Using the Transient Short Hot Wire Method. Int J Thermophys 38, 123 (2017). https://doi.org/10.1007/s10765-017-2258-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-017-2258-y

Keywords

  • Lysozyme
  • Magneto-Archimedes effect
  • Magnetic levitation
  • Thermal conductivity
  • Thermal diffusivity
  • Transient hot wire method