Skip to main content

Advertisement

Log in

EMPRESS: A European Project to Enhance Process Control Through Improved Temperature Measurement

  • TEMPMEKO 2016
  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

A new European project called EMPRESS, funded by the EURAMET program ‘European Metrology Program for Innovation and Research,’ is described. The 3  year project, which started in the summer of 2015, is intended to substantially augment the efficiency of high-value manufacturing processes by improving temperature measurement techniques at the point of use. The project consortium has 18 partners and 5 external collaborators, from the metrology sector, high-value manufacturing, sensor manufacturing, and academia. Accurate control of temperature is key to ensuring process efficiency and product consistency and is often not achieved to the level required for modern processes. Enhanced efficiency of processes may take several forms including reduced product rejection/waste; improved energy efficiency; increased intervals between sensor recalibration/maintenance; and increased sensor reliability, i.e., reduced amount of operator intervention. Traceability of temperature measurements to the International Temperature Scale of 1990 (ITS-90) is a critical factor in establishing low measurement uncertainty and reproducible, consistent process control. Introducing such traceability in situ (i.e., within the industrial process) is a theme running through this project.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. J.V. Pearce, F. Edler, C.J. Elliott, L. Rosso, G. Sutton, S. MacKenzie, G. Machin, in Proceedings of 17th International Congress of Metrologie, EDP Sciences, (2015). doi:10.1051/metrology/20150008001

  2. G. Machin, K. Anhalt, M. Battuello, F. Bourson, P. Dekker, A. Diril, F. Edler, C. Elliott, F. Girard, A. Greenen, L. Kňazovická, D. Lowe, P. Pavlásek, J. Pearce, M. Sadli, R. Strnad, M. Seifert, E.N. Vuelban, Measurement 78, 168–179 (2016)

    Article  Google Scholar 

  3. H. Preston-Thomas, Metrologia 27 (1990) 3–10; erratum. Metrologia 27, 107 (1990)

  4. FWC Sector Competitiveness Studies—Competitiveness of the EU Aerospace Industry with focus on Aeronautics Industry, ENTR/06/054 (ECORYS study for European Commission)

  5. Strategic Research Agenda, Volume 1, Advisory Council for Aeronautics in Europe (2004)

  6. B. Cantor, P. Grant, H. Assender, Aerospace Materials (Taylor & Francis, London, 2001). [ISBN 978-0750307420]

    Google Scholar 

  7. 2008 Addendum to the Strategic Research Agenda, Advisory Council for Aeronautics in Europe

  8. Factories of the future: European Commission multi-annual roadmap for the contractual PPP under Horizon 2020, Policy Research document prepared by EFFRA; ISBN 978-92-79-31238-0

  9. O. Ongrai, J.V. Pearce, G. Machin, S.J. Sweeney, AIP Conf. Proc. 1552, 504 (2013)

    Article  ADS  Google Scholar 

  10. Aerospace Material Specification (AMS) 2750 REV. E—Pyrometry (SAE International, Warrendale, 2012)

  11. P.A. Kinzie, Thermocouple Temperature Measurement (Wiley, New York, 1973). [ISBN 0-471-48080-0]

    Book  Google Scholar 

  12. ASTM E1751/E1751 M—09 Standard Guide for Temperature Electromotive Force (EMF) Tables for Non-letter Designated Thermocouple Combinations (ASTM, West Conshohocken, 2009)

  13. G. Machin, AIP Conf. Proc. 1552, 305 (2013). doi:10.1063/1.4821383

    Article  ADS  Google Scholar 

  14. J.V. Pearce, Johnson Matthey Technology Review (submitted) (2016)

  15. J.V. Pearce, A. Smith, C.J. Elliott, A. Greenen, Tempmeko 2016 (these proceedings)

  16. J.V. Pearce, C.J. Elliott, G. Machin, O. Ongrai, AIP Conf. Proc. 1552, 595 (2013)

    Article  ADS  Google Scholar 

  17. C. Elliott, J. Pearce, G. Machin, C. Schwarz, R. Lindner, in Proceedings of 12th European Conference on Spacecraft Structures, Materials and Environmental Testing, ESA Communications med. I Ouwehand, 2012 ESA (2012). ISBN 978-92-9092-255-1

  18. EUROMET Project No. 635 Final Report: Comparison of the reference surface temperature apparatus at NMIs by comparison of transfer surface temperature standards, E. András (2003)

  19. R. Morice, E. András, E. Devin, T. Kovacs, in Proceedings of TEMPMEKO 2001, 8th International Symposium on Temperature and Thermal Measurements in Industry and Science, ed. by B. Fellmuth, J. Seidel, G. Scholz (VDE Verlag, Berlin, 2002), pp. 1111–1116

  20. BS EN ISO 8502-4:2000 Preparation of steel substrates before application of paints and related products—Tests for the assessment of surface cleanliness—Part 4: Guidance on the estimation of the probability of condensation prior to paint application

  21. S.W. Allison, G.T. Gillies, Rev. Sci. Instrum. 68, 2615–2650 (1997)

    Article  ADS  Google Scholar 

  22. L. Rosso, V.C. Fernicola, A. Tiziani, in Temperature: Its Measurement and Control in Science and Industry, ed. by M. Strouse, S. Tew (American Institute of Physics, New York, 2003)

  23. L. Rosso, V. Fernicola, Rev. Sci. Instrum. 77, 034901 (2006)

    Article  ADS  Google Scholar 

  24. A.H. Khalid, K. Kontis, Sensors (Basel) 8, 5673–5744 (2008)

    Article  Google Scholar 

  25. L. Rosso, V.C. Fernicola, A. Tiziani, in CP684, Temperature: Its Measurement and Control in Science and Industry, vol. 7, ed. by D.C. Ripple (2003). AIP 0-7354-0153-5/03

  26. Reduction of emissions and energy utilisation of coke oven underfiring heating systems through advanced diagnostics and control (Ecocarb), European Commission Research Fund for Coal and Steel, M. Saiepour, J. Delinchant, J. Soons, F. Huhn, J. Morris, Final Report. ISBN 978-92-79-29187-6

  27. G. Sutton, A. Levick, G. Edwards, D. Greenhalgh, Combust. Flame 147, 39–48 (2006)

    Article  Google Scholar 

  28. J.C. Jones, in Thermal Measurements: The Foundation of Fire Standards, ed. by L.A. Gritzo, N. Alvares ASTM STP1427 (2003)

Download references

Acknowledgements

This article describes the EMPIR project 14IND04 ‘EMPRESS.’ The EMPIR program is jointly funded by the participating countries within EURAMET and the European Union. We thank a number of the project partners for contributing material: A. Greenen (NPL), R. Strnad (CMI), J.M.M. Amor (CEM), M. Rodríguez (UC3 M), S.L. Andersen (DTI), A.-D. Moroşanu (BRML), A. Fateev (DTU), Å.A.F. Olsen (JV), S. Simonsen (Elkem), M. Scervini (UCAM), P. Ewart (UOXF), M. Thomas (BAE), T. Ford (CCPI Europe Limited). © Crown Copyright 2017. Reproduced by permission of the Queen’s Controller of HMSO and the Queen’s Printer for Scotland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. V. Pearce.

Additional information

Selected Papers of the 13th International Symposium on Temperature, Humidity, Moisture and Thermal Measurements in Industry and Science.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pearce, J.V., Edler, F., Elliott, C.J. et al. EMPRESS: A European Project to Enhance Process Control Through Improved Temperature Measurement. Int J Thermophys 38, 118 (2017). https://doi.org/10.1007/s10765-017-2253-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-017-2253-3

Keywords

Navigation